2025年学考A加同步课时练八年级数学下册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年学考A加同步课时练八年级数学下册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1.下列式子中,属于最简二次根式的是 ( )
A.$\sqrt{\frac{1}{3}}$
B.$\sqrt{7}$
C.$\sqrt{8}$
D.$\sqrt{0.2}$
A.$\sqrt{\frac{1}{3}}$
B.$\sqrt{7}$
C.$\sqrt{8}$
D.$\sqrt{0.2}$
答案:
B
2.下列运算结果是无理数的是 ( )
A.$3\sqrt{2}\times\sqrt{2}$
B.$\sqrt{3}\times\sqrt{2}$
C.$\sqrt{72}\div\sqrt{2}$
D.$\sqrt{13^{2}-5^{2}}$
A.$3\sqrt{2}\times\sqrt{2}$
B.$\sqrt{3}\times\sqrt{2}$
C.$\sqrt{72}\div\sqrt{2}$
D.$\sqrt{13^{2}-5^{2}}$
答案:
B
3.下列计算正确的是 ( )
A.$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$
B.$(a + b)^{2}=a^{2}+b^{2}$
C.$\frac{1}{x}+\frac{1}{y}=\frac{1}{xy}$
D.$(-p^{2}q)^{3}=-p^{5}q^{3}$
A.$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$
B.$(a + b)^{2}=a^{2}+b^{2}$
C.$\frac{1}{x}+\frac{1}{y}=\frac{1}{xy}$
D.$(-p^{2}q)^{3}=-p^{5}q^{3}$
答案:
A[解析]A.$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$,正确;
B.$(a + b)^2 = a^2 + 2ab + b^2$,故此选项错误;
C.$\frac{1}{x}+\frac{1}{y}=\frac{y + x}{xy}$,故此选项错误;
D.$(-p^2q)^3=-p^6q^3$,故此选项错误.
故选A
B.$(a + b)^2 = a^2 + 2ab + b^2$,故此选项错误;
C.$\frac{1}{x}+\frac{1}{y}=\frac{y + x}{xy}$,故此选项错误;
D.$(-p^2q)^3=-p^6q^3$,故此选项错误.
故选A
4.下列计算正确的是 ( )
A.$(a^{3})^{2}=a^{6}$
B.$a^{6}\div a^{3}=a^{2}$
C.$2a - 3a = a$
D.$\sqrt{-2a}=\sqrt{-2}\times\sqrt{a}$
A.$(a^{3})^{2}=a^{6}$
B.$a^{6}\div a^{3}=a^{2}$
C.$2a - 3a = a$
D.$\sqrt{-2a}=\sqrt{-2}\times\sqrt{a}$
答案:
A
5.将二次根式$\sqrt{48}$化为最简二次根式的结果是________.
答案:
$4\sqrt{3}$
6.计算$\sqrt{3}\times\sqrt{6}$的结果为________.
答案:
$3\sqrt{2}$
7.计算$\frac{\sqrt{3}\cdot\sqrt{15}}{\sqrt{5}}$的结果是________.
答案:
3
8.计算:
(1)$4\sqrt{15}\times2\sqrt{3}\div\sqrt{5}$;
(2)$\sqrt{7}\div3\sqrt{3}\times2\sqrt{3}\div3\sqrt{7}$;
(3)$2\sqrt{12}\times\frac{3}{4}\div3\sqrt{2}$;
(4)$\frac{1}{2}\sqrt{6}\times4\sqrt{12}\div\frac{2}{3}\sqrt{2}$.
(1)$4\sqrt{15}\times2\sqrt{3}\div\sqrt{5}$;
(2)$\sqrt{7}\div3\sqrt{3}\times2\sqrt{3}\div3\sqrt{7}$;
(3)$2\sqrt{12}\times\frac{3}{4}\div3\sqrt{2}$;
(4)$\frac{1}{2}\sqrt{6}\times4\sqrt{12}\div\frac{2}{3}\sqrt{2}$.
答案:
解:
(1)原式$=8\sqrt{15\times3}\div\sqrt{5}$
$=8\times3$
$=24$.
(2)原式$=\frac{\sqrt{7}\times2\sqrt{3}}{3\sqrt{3}\times3\sqrt{7}}=\frac{2}{9}$.
(3)原式$=(2\times\frac{3}{4}\times\frac{1}{3})\sqrt{\frac{12}{2}}$
$=\frac{1}{2}\sqrt{6}$.
(4)原式$=\frac{1}{2}\times4\times\frac{3}{2}\times\sqrt{6\times12}\div2$
$=3\sqrt{36}$
$=18$.
(1)原式$=8\sqrt{15\times3}\div\sqrt{5}$
$=8\times3$
$=24$.
(2)原式$=\frac{\sqrt{7}\times2\sqrt{3}}{3\sqrt{3}\times3\sqrt{7}}=\frac{2}{9}$.
(3)原式$=(2\times\frac{3}{4}\times\frac{1}{3})\sqrt{\frac{12}{2}}$
$=\frac{1}{2}\sqrt{6}$.
(4)原式$=\frac{1}{2}\times4\times\frac{3}{2}\times\sqrt{6\times12}\div2$
$=3\sqrt{36}$
$=18$.
9.(1)探索:先观察并计算下列各式,在空白处填上“>”“<”或“=”,并完成后面的问题.
$\sqrt{4}\times\sqrt{16}$________$\sqrt{4\times16}$;$\sqrt{49}\times\sqrt{9}$________$\sqrt{49\times9}$;$\sqrt{\frac{9}{25}}\times\sqrt{25}$________$\sqrt{\frac{9}{25}\times25}$;$\sqrt{\frac{16}{9}}\times\sqrt{\frac{4}{25}}$________$\sqrt{\frac{16}{9}\times\frac{4}{25}}$,….
用$\sqrt{a}$、$\sqrt{b}$、$\sqrt{ab}$表示上述规律为:________;
(2)利用(1)中的结论,求$\sqrt{8}\times\sqrt{\frac{1}{2}}$的值;
(3)设$x = \sqrt{3}$,$y = \sqrt{6}$试用含$x$、$y$的式子表示$\sqrt{54}$.
$\sqrt{4}\times\sqrt{16}$________$\sqrt{4\times16}$;$\sqrt{49}\times\sqrt{9}$________$\sqrt{49\times9}$;$\sqrt{\frac{9}{25}}\times\sqrt{25}$________$\sqrt{\frac{9}{25}\times25}$;$\sqrt{\frac{16}{9}}\times\sqrt{\frac{4}{25}}$________$\sqrt{\frac{16}{9}\times\frac{4}{25}}$,….
用$\sqrt{a}$、$\sqrt{b}$、$\sqrt{ab}$表示上述规律为:________;
(2)利用(1)中的结论,求$\sqrt{8}\times\sqrt{\frac{1}{2}}$的值;
(3)设$x = \sqrt{3}$,$y = \sqrt{6}$试用含$x$、$y$的式子表示$\sqrt{54}$.
答案:
解:
(1)$\because\sqrt{4}\times\sqrt{16}=2\times4 = 8,\sqrt{4\times16}=\sqrt{64}=8$,
$\therefore\sqrt{4}\times\sqrt{16}=\sqrt{4\times16}$,
$\sqrt{49}\times\sqrt{9}=\sqrt{49\times9}$,
$\sqrt{\frac{16}{9}}\times\sqrt{\frac{4}{25}}=\sqrt{\frac{16}{9}\times\frac{4}{25}}$,
$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$,
故答案为:$=,=,=,=,\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}(a\geq0,b\geq0)$.
(2)$\sqrt{8}\times\sqrt{\frac{1}{2}}$
$=\sqrt{8\times\frac{1}{2}}$
$=\sqrt{4}$
$=2$.
(3)$\because x = \sqrt{3},y = \sqrt{6}$,
$\therefore\sqrt{54}=\sqrt{3\times3\times6}$
$=\sqrt{3}\times\sqrt{3}\times\sqrt{6}$
$=x\cdot x\cdot y$
$=x^2y$.
(1)$\because\sqrt{4}\times\sqrt{16}=2\times4 = 8,\sqrt{4\times16}=\sqrt{64}=8$,
$\therefore\sqrt{4}\times\sqrt{16}=\sqrt{4\times16}$,
$\sqrt{49}\times\sqrt{9}=\sqrt{49\times9}$,
$\sqrt{\frac{16}{9}}\times\sqrt{\frac{4}{25}}=\sqrt{\frac{16}{9}\times\frac{4}{25}}$,
$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$,
故答案为:$=,=,=,=,\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}(a\geq0,b\geq0)$.
(2)$\sqrt{8}\times\sqrt{\frac{1}{2}}$
$=\sqrt{8\times\frac{1}{2}}$
$=\sqrt{4}$
$=2$.
(3)$\because x = \sqrt{3},y = \sqrt{6}$,
$\therefore\sqrt{54}=\sqrt{3\times3\times6}$
$=\sqrt{3}\times\sqrt{3}\times\sqrt{6}$
$=x\cdot x\cdot y$
$=x^2y$.
查看更多完整答案,请扫码查看