2025年优化探究同步导学案高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年优化探究同步导学案高中数学选择性必修第二册人教版》

1. 数列$\{a_{n}\}$是公比不为$-1$的等比数列(或公比为$-1$,且$ n $不是偶数),$ S_{n} $为其前$ n $项和,则$ S_{n},S_{2n}-S_{n} $,
$S_{3n} - S_{2n}$
仍构成等比数列.
2. 若$\{a_{n}\}$是公比为$ q $的等比数列,则$ S_{n + m}=S_{n}+$
$q^{n}S_{m}$
$ (n,m\in\mathbf{N}^{*}) $.
3. 若$\{a_{n}\}$是公比为$ q $的等比数列,$ S_{ 偶},S_{ 奇} $分别是数列的偶数项和与奇数项和,则:
(1)在其前$ 2n $项中,$ \dfrac{S_{ 偶}}{S_{ 奇}}=q $;
(2)在其前$ 2n + 1 $项中,$ S_{ 奇}-S_{ 偶}=a_{1}-a_{2}+a_{3}-a_{4}+·s - a_{2n}+a_{2n + 1}=\dfrac{a_{1}+a_{2n + 1}q}{1 - (-q)}=\dfrac{a_{1}+a_{2n + 2}}{1 + q}(q\neq - 1) $.
答案: 1.$S_{3n} - S_{2n}$
2.$q^{n}S_{m}$
[例2] (1)已知等比数列$\{a_{n}\}$共有$ 2n $项,其和为$-240$,且$ (a_{1}+a_{3}+·s + a_{2n - 1})-(a_{2}+a_{4}+·s + a_{2n}) = 80 $,则公比$ q=$
2

(2)若等比数列$\{a_{n}\}$共有奇数项,其首项为$ 1 $,其偶数项和为$ 170 $,奇数项和为$ 341 $,则这个数列的公比为
2
,项数为
9

(3)在等比数列$\{a_{n}\}$中,已知$ S_{n}=48 $,$ S_{2n}=60 $,则$ S_{3n}=$
63
.
答案: [例2][答案] 
(1)2
(2)29
(3)63
[解析] 
(1)由题意知$S_{奇} + S_{偶} = - 240$,$S_{奇} - S_{偶} = 80$,
$\therefore S_{奇} = - 80$,$S_{偶} = - 160$,
$\therefore q = \frac{S_{偶}}{S_{奇}} = 2$.
(2)由性质$S_{奇} = a_{1} + qS_{偶}$可知$341 = 1 + 170q$,$\therefore q = 2$,设这个数列共有$2n + 1$项,则$S_{2n + 1} = \frac{1 - 2^{2n + 1}}{1 - 2} = 341 + 170 = 511$,解得$n = 4$,即这个等比数列的项数为$9$.
(3)法一:$\because S_{2n}\neq 2S_{n}$,$\therefore q\neq 1$,由已知得$\begin{cases}\frac{a_{1}(1 - q^{n})}{1 - q} = 48,&①\frac{a_{1}(1 - q^{2n})}{1 - q} = 60.&②\end{cases}$
②$÷$①得$1 + q^{n} = \frac{5}{4}$,即$q^{n} = \frac{1}{4}$,③
将③代入①得$\frac{a_{1}}{1 - q} = 64$,$\therefore S_{3n} = \frac{a_{1}(1 - q^{3n})}{1 - q} = 64×\left(1 - \frac{1}{4^{3}}\right) = 63$.
法二:$\because\{ a_{n}\}$为等比数列,显然公比不等于$-1$,
$\therefore S_{n},S_{2n} - S_{n},S_{3n} - S_{2n}$也成等比数列,
$\therefore(S_{2n} - S_{n})^{2} = S_{n}(S_{3n} - S_{2n})$,$\therefore S_{3n} = \frac{(S_{2n} - S_{n})^{2}}{S_{n}} + S_{2n} = \frac{(60 - 48)^{2}}{48} + 60 = 63$.
法三:由性质$S_{m + n} = S_{m} + q^{m}S_{n}$可知$S_{2n} = S_{n} + q^{n}S_{n}$,即$60 = 48 + 48q^{n}$,得$q^{n} = \frac{1}{4}$,
$\therefore S_{3n} = S_{2n} + q^{2n}S_{n} = 60 + 48×\left(\frac{1}{4}\right)^{2} = 63$.
3. 在正项等比数列$\{a_{n}\}$中,$ S_{n} $为其前$ n $项和,若$ S_{30}=13S_{10} $,$ S_{10}+S_{30}=140 $,则$ S_{20} $的值为(
D
)

A.$ 10 $
B.$ 18 $
C.$ 36 $
D.$ 40 $
答案: 3.D 易知$S_{10} = 10$,$S_{30} = 130$,
$\because S_{10},S_{20} - S_{10},S_{30} - S_{20}$为等比数列,
$\therefore(S_{20} - S_{10})^{2} = S_{10}(S_{30} - S_{20})$,
代入数据可得$(S_{20} - 10)^{2} = 10(130 - S_{20})$,
解得$S_{20} = 40$或$S_{20} = - 30$(舍),所以$S_{20} = 40$.
4. 一个项数为偶数的等比数列$\{a_{n}\}$,全部各项之和为偶数项之和的$ 4 $倍,前$ 3 $项之积为$ 64 $,求数列的通项公式.
答案: 4.解:设数列$\{ a_{n}\}$的首项为$a_{1}$,公比为$q$.
所有奇数项、偶数项之和分别记作$S_{奇}$,$S_{偶}$,由题意可知,$S_{奇} + S_{偶} = 4S_{偶}$,即$S_{奇} = 3S_{偶}$.因为数列$\{ a_{n}\}$的项数为偶数,所以有$q = \frac{S_{偶}}{S_{奇}} = \frac{1}{3}$.
又因为$a_{1} · a_{1}q · a_{1}q^{2} = 64$,所以$a_{1}^{3} · q^{3} = 64$,即$a_{1} = 12$,
故所求通项公式为$a_{n} = 12×\left(\frac{1}{3}\right)^{n - 1},n\in N^{*}$.

查看更多完整答案,请扫码查看

关闭