2025年优化探究同步导学案高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第27页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
1. 等比数列通项公式的推广和变形$a_{n} =$
2. 设数列$\{a_{n}\}$为等比数列,则:
(1) 若$k + l = m + n(k,l,m,n \in \mathbf{N}^{*})$,则
(2) 若$m,p,n$成等差数列,则
$amq^{n - m}$
.2. 设数列$\{a_{n}\}$为等比数列,则:
(1) 若$k + l = m + n(k,l,m,n \in \mathbf{N}^{*})$,则
$a_{k} · a_{l} = a_{m} · a_{n}$
.(2) 若$m,p,n$成等差数列,则
$a_{m},a_{p},a_{n}$
成等比数列.
答案:
1.$amq^{n - m}$
2.
(1)$a_{k} · a_{l} = am · a_{n}$ $(2)a_{m},a_{p},a_{n}$
2.
(1)$a_{k} · a_{l} = am · a_{n}$ $(2)a_{m},a_{p},a_{n}$
[例2]
在等比数列$\{a_{n}\}$中:
(1) 已知$a_{3} + a_{6} = 36$,$a_{4} + a_{7} = 18$,$a_{n} =\frac{1}{2}$,求$n$;
(2) 已知$a_{5} = 8$,$a_{7} = 2$,$a_{n} > 0$,求$a_{n}$.
在等比数列$\{a_{n}\}$中:
(1) 已知$a_{3} + a_{6} = 36$,$a_{4} + a_{7} = 18$,$a_{n} =\frac{1}{2}$,求$n$;
(2) 已知$a_{5} = 8$,$a_{7} = 2$,$a_{n} > 0$,求$a_{n}$.
答案:
[解] 设等比数列$\{ a_{n}\}$的公比为$q$.
(1) 由$\begin{cases}a_{4} + a_{7} = q(a_{3} + a_{6}) = 18, \\a_{3} + a_{6} = 36,\end{cases}$得$q$
$ = \frac{1}{2}$.
再由$a_{3} + a_{6} = a_{3} · (1 + q^{3}) = 36$得$a_{3} = 32$,
则$a_{n} = a_{3} · q^{n - 3} = 32 × (\frac{1}{2})^{n - 3} = (\frac{1}{2})^{n - 8}$,
所以$n - 8 = 1$,所以$n = 9$.
(2)由$a_{5} = 8,a_{7} = a_{5} · q^{2} = 2$,得$q^{2} = \frac{1}{4}$.
因为$a_{n} > 0$,所以$q = \frac{1}{2}$,
所以$a_{n} = a_{5} · q^{n - 5} = 8 × (\frac{1}{2})^{n - 5} = (\frac{1}{2})^{n - 8}$.
(1) 由$\begin{cases}a_{4} + a_{7} = q(a_{3} + a_{6}) = 18, \\a_{3} + a_{6} = 36,\end{cases}$得$q$
$ = \frac{1}{2}$.
再由$a_{3} + a_{6} = a_{3} · (1 + q^{3}) = 36$得$a_{3} = 32$,
则$a_{n} = a_{3} · q^{n - 3} = 32 × (\frac{1}{2})^{n - 3} = (\frac{1}{2})^{n - 8}$,
所以$n - 8 = 1$,所以$n = 9$.
(2)由$a_{5} = 8,a_{7} = a_{5} · q^{2} = 2$,得$q^{2} = \frac{1}{4}$.
因为$a_{n} > 0$,所以$q = \frac{1}{2}$,
所以$a_{n} = a_{5} · q^{n - 5} = 8 × (\frac{1}{2})^{n - 5} = (\frac{1}{2})^{n - 8}$.
[例3]
已知$\{a_{n}\}$为等比数列.
(1) 若$\{a_{n}\}$满足$a_{2}a_{4} =\frac{1}{2}$,求$a_{1} · a_{3}^{2} · a_{5}$;
(2) 若$a_{n} > 0$,$a_{5}a_{7} + 2a_{6}a_{8} + a_{6}a_{10} = 49$,求$a_{6} + a_{8}$;
(3) 若$a_{n} > 0$,$a_{5}a_{6} = 9$,求$\log_{3}a_{1} + \log_{3}a_{2} + ·s + \log_{3}a_{10}$的值.
已知$\{a_{n}\}$为等比数列.
(1) 若$\{a_{n}\}$满足$a_{2}a_{4} =\frac{1}{2}$,求$a_{1} · a_{3}^{2} · a_{5}$;
(2) 若$a_{n} > 0$,$a_{5}a_{7} + 2a_{6}a_{8} + a_{6}a_{10} = 49$,求$a_{6} + a_{8}$;
(3) 若$a_{n} > 0$,$a_{5}a_{6} = 9$,求$\log_{3}a_{1} + \log_{3}a_{2} + ·s + \log_{3}a_{10}$的值.
答案:
[解]
(1)在等比数列$\{ a_{n}\}$中,
$\because a_{2}a_{4} = \frac{1}{2},\therefore a_{3}^{2} = a_{1}a_{5} = a_{2}a_{4} = \frac{1}{2}$,
$\therefore a_{1}a_{3}a_{5} = \frac{1}{4}$.
(2)由等比中项,化简条件得$a_{6}^{2} + 2a_{6}a_{8} + a_{8}^{2} = 49$,即$(a_{6} + a_{8})^{2} = 49$,
$\because a_{n} > 0,\therefore a_{6} + a_{8} = 7$.
(3)由等比数列的性质知$a_{5}a_{6} = a_{1}a_{10} = a_{2}a_{9} = a_{3}a_{8} = a_{4}a_{7} = 9$,
$\therefore \log_{3}a_{1} + \log_{3}a_{2} + ·s + \log_{3}a_{10} = \log_{3}(a_{1}a_{2} · ·s · a_{10}) = \log_{3}[(a_{1}a_{10})(a_{2}a_{9})(a_{3}a_{8})(a_{4}a_{7})(a_{5}a_{6})] = \log_{3}9^{5} = 10$.
(1)在等比数列$\{ a_{n}\}$中,
$\because a_{2}a_{4} = \frac{1}{2},\therefore a_{3}^{2} = a_{1}a_{5} = a_{2}a_{4} = \frac{1}{2}$,
$\therefore a_{1}a_{3}a_{5} = \frac{1}{4}$.
(2)由等比中项,化简条件得$a_{6}^{2} + 2a_{6}a_{8} + a_{8}^{2} = 49$,即$(a_{6} + a_{8})^{2} = 49$,
$\because a_{n} > 0,\therefore a_{6} + a_{8} = 7$.
(3)由等比数列的性质知$a_{5}a_{6} = a_{1}a_{10} = a_{2}a_{9} = a_{3}a_{8} = a_{4}a_{7} = 9$,
$\therefore \log_{3}a_{1} + \log_{3}a_{2} + ·s + \log_{3}a_{10} = \log_{3}(a_{1}a_{2} · ·s · a_{10}) = \log_{3}[(a_{1}a_{10})(a_{2}a_{9})(a_{3}a_{8})(a_{4}a_{7})(a_{5}a_{6})] = \log_{3}9^{5} = 10$.
跟踪训练
2. (多选)已知等比数列$\{a_{n}\}$满足$1 + a_{4}a_{8} = 2a_{7}$,则(
A.$a_{1} > 0$
B.$q \geq 1$
C.$a_{3} \leq a_{5}$
D.$a_{2}a_{4} \leq a_{3}a_{5}$
2. (多选)已知等比数列$\{a_{n}\}$满足$1 + a_{4}a_{8} = 2a_{7}$,则(
ACD
)A.$a_{1} > 0$
B.$q \geq 1$
C.$a_{3} \leq a_{5}$
D.$a_{2}a_{4} \leq a_{3}a_{5}$
答案:
设公比为$q$.
对于A,因为$1 + a_{4}a_{8} = 2a_{7}$,所以$1 + a_{1}^{2}q^{6} = 2a_{1}q^{6} > 0$,所以$a_{1} > 0$,A正确.
对于B,因为$1 + a_{4}a_{8} = 2a_{7}$,所以$a_{1}^{2} - 2a_{1}a_{6} + 1 = 0$,要使得$a_{6}$存在,则$\Delta = 4a_{6}^{2} - 4 \geqslant 0$,
即$q^{2} \geqslant 1$,所以$q \geqslant 1$或$q \leqslant - 1$,B错误.
对于C,因为$a_{3} - a_{5} = (1 - q^{2})a_{3}$,又因为$a_{3} = a_{1} · q^{2} > 0$,所以$a_{1} \leqslant a_{5}$,C正确.
对于D,因为$a_{2}a_{4} - a_{3}a_{5} = a_{3}^{2} - a_{4}^{2} = a_{3}^{2}(1 - q^{2}) \leqslant 0$,所以$a_{2}a_{4} \leqslant a_{3}a_{5}$,D正确.
对于A,因为$1 + a_{4}a_{8} = 2a_{7}$,所以$1 + a_{1}^{2}q^{6} = 2a_{1}q^{6} > 0$,所以$a_{1} > 0$,A正确.
对于B,因为$1 + a_{4}a_{8} = 2a_{7}$,所以$a_{1}^{2} - 2a_{1}a_{6} + 1 = 0$,要使得$a_{6}$存在,则$\Delta = 4a_{6}^{2} - 4 \geqslant 0$,
即$q^{2} \geqslant 1$,所以$q \geqslant 1$或$q \leqslant - 1$,B错误.
对于C,因为$a_{3} - a_{5} = (1 - q^{2})a_{3}$,又因为$a_{3} = a_{1} · q^{2} > 0$,所以$a_{1} \leqslant a_{5}$,C正确.
对于D,因为$a_{2}a_{4} - a_{3}a_{5} = a_{3}^{2} - a_{4}^{2} = a_{3}^{2}(1 - q^{2}) \leqslant 0$,所以$a_{2}a_{4} \leqslant a_{3}a_{5}$,D正确.
查看更多完整答案,请扫码查看