2025年优化探究同步导学案高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年优化探究同步导学案高中数学选择性必修第二册人教版》

[例1] 在等比数列$\{a_{n}\}$中,
(1)$ a_{1}+a_{3}=10 $,$ a_{4}+a_{6}=\dfrac{5}{4} $,求$ S_{5} $;
(2)$ S_{2}=30 $,$ S_{3}=155 $,求$ S_{n} $;
(3)$ a_{1}+a_{n}=66 $,$ a_{2}a_{n - 1}=128 $,$ S_{n}=126 $,求公比$ q $.
答案:
[例1][解]设等比数列$\{ a_{n}\}$的公比为$q$.
(1)法一:由题意,知$\begin{cases}a_{1} + a_{1}q^{2} = 10,\\a_{1}q^{3} + a_{1}q^{5} = \frac{5}{4}.\end{cases}$解得$\begin{cases}a_{1} = 8,\\q = \frac{1}{2}.\end{cases}$从而$S_{5} = \frac{a_{1}(1 - q^{5})}{1 - q} = \frac{31}{2}$.
法二:由$(a_{1} + a_{3})q^{3} = a_{4} + a_{6}$,得$q^{3} = \frac{1}{8}$,从而$q = \frac{1}{2}$.
又因为$a_{1} + a_{3} = a_{1}(1 + q^{2}) = 10$,所以$a_{1} = 8$,从而$S_{5} = \frac{a_{1}(1 - q^{5})}{1 - q} = \frac{31}{2}$.
(2)由题意,知$\begin{cases}a_{1}(1 + q) = 30,\\a_{1}(1 + q + q^{2}) = 155.\end{cases}$
解得$\begin{cases}a_{1} = 5,\\q = 5\end{cases}$或$\begin{cases}a_{1} = 180,\\q = - \frac{5}{6}.\end{cases}$
从而$S_{n} = \frac{1}{4} × 5^{n + 1} - \frac{5}{4}$或$S_{n} = 1080×\left[1 - \left(- \frac{5}{6}\right)^{n}\right]×\frac{11}{1}$1080x1frac5611
(3)因为$a_{2}a_{n - 1} = a_{1}a_{n} = 128$,所以$a_{1},a_{n}$是方程$x^{2} - 66x + 128 = 0$的两个根,
从而$\begin{cases}a_{1} = 2,\\a_{n} = 64.\end{cases}$或$\begin{cases}a_{1} = 64,\\a_{n} = 2.\end{cases}$
又因为$S_{n} = \frac{a_{1} - a_{n}q}{1 - q} = 126$,所以$q = 2$或$\frac{1}{2}$.
1. (多选)已知在等比数列$\{a_{n}\}$中,$ a_{3}=7 $,前三项之和$ S_{3}=21 $,则$ S_{5} $的值可能是(
AC
)

A.$ 35 $
B.$ -\dfrac{1}{2} $
C.$ \dfrac{77}{4} $
D.$ 1 $
答案: 1.AC 设等比数列$a_{n} = a_{1}q^{n - 1}(q\neq 0)$,则有$a_{3} = a_{1}q^{2} = 7$,即$a_{1} = \frac{7}{q^{2}}$,$S_{3} = a_{1} + a_{2} + a_{3} = a_{1}(1 + q + q^{2}) = \frac{7(1 + q + q^{2})}{q^{2}}$,即$2q^{2} - q - 1 = 0$,解得$q = 1$或$q = - \frac{1}{2}$,
当$q = 1$时,则$a_{n} = a_{3} = 7$,故$S_{5} = 5×7 = 35$;
当$q = - \frac{1}{2}$时,$a_{n} = a_{3}q^{n - 3} = 7×\left(- \frac{1}{2}\right)^{n - 3} = 28×\left(- \frac{1}{2}\right)^{n - 1}$,则$a_{1} = 28$,$S_{5} = \frac{a_{1}(1 - q^{5})}{1 - q} = \frac{28×\left[1 - \left(- \frac{1}{2}\right)^{5}\right]}{1 - \left(- \frac{1}{2}\right)} = \frac{77}{4}×\frac{3}{2}$
2. 已知等比数列$\{a_{n}\}$的各项均为正数,其前$ n $项和为$ S_{n} $,若$ a_{2}a_{4}=1 $,$ S_{3}=7 $,则$ S_{5}=$
$\frac{31}{4}$
.
答案: 2.答案:$\frac{31}{4}$
解析:由题知等比数列$\{ a_{n}\}$的各项均为正数,即$a_{n}>0$,设其公比为$q$,则$q>0$,
因为$a_{2}a_{4} = 1$,$S_{3} = 7$,所以$a_{1}q· a_{1}q^{3} = a_{1}^{2}q^{4} = 1$,即$a_{1} = \frac{1}{q^{2}}$,$S_{3} = a_{1} + a_{2} + a_{3}$,即$a_{1}(1 + q + q^{2}) = 7$,即$\frac{1}{q^{2}}(1 + q + q^{2}) = 7$,即$6q^{2} - q - 1 = 0$,即$(3q + 1)(2q - 1) = 0$,
故$q = \frac{1}{2}$或$q = - \frac{1}{3}$(舍去),则$a_{1} = \frac{1}{q^{2}} = 4$,所以$S_{5} = \frac{4×\left[1 - \left(\frac{1}{2}\right)^{5}\right]}{1 - \frac{1}{2}} = \frac{31}{4}$.

查看更多完整答案,请扫码查看

关闭