2025年优化探究同步导学案高中数学选择性必修第二册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年优化探究同步导学案高中数学选择性必修第二册人教版》

例3
已知等差数列$\{ a_{n}\}$的前n项和为$S_{n}$,且$S_{7}=35,a_{2}a_{4}=45$.
(1)求数列$\{ a_{n}\}$的通项公式;
(2)记$b_{n}=|a_{n}|$,求数列$\{ b_{n}\}$的前n项和$T_{n}$.
答案: [例3][解]
(1)设数列\{a_n\}的公差为d,
由$S_7 = 35,$$a_2a_4 = 45,$
得$\begin{cases}7a_1 + 21d = 35, \\(a_1 + d)(a_1 + 3d) = 45,\end{cases}$解得$\begin{cases}a_1 = 11, \\d = -2.\end{cases}$
$\therefore a_n = 11 + (n - 1) × (-2) = 13 - 2n.$
(2)由a_n = 13 - 2n > 0,得n < \frac{13}{2},
∴当n \leq 6时,a_n > 0,
此时T_n = |$a_1$| + |$a_2$| + ·s + |a_n|$ = a_1 + a_2 + ·s + a_n = \frac{n(11 + 13 - 2n)}{2} = 12n - n^2.$
当n > 6时,a_n < 0,
此时T_n = |$a_1$| + |$a_2$| + ·s + |a_n|$ = a_1 + a_2 + ·s + a_6 - (a_7 + a_8 + ·s + a_n)$
$ = 2(a_1 + a_2 + ·s + a_6) - (a_1 + a_2 + ·s + a_6 + a_7 + ·s + a_n)$
$ = 2 × (12 × 6 - 6^2) - (12n - n^2) = n^2 - 12n + 72,$
所以$T_n = \begin{cases}12n - n^2, n \leq 6, \\n^2 - 12n + 72, n > 6.\end{cases}$
跟踪训练
4. 已知数列$\{ a_{n}\}$的前n项和为$S_{n}$,且$S_{n}=n^{2}-15n$.
(1)求$\{ a_{n}\}$的通项公式;
(2)若$c_{n}=|a_{n}|$,求$\{ c_{n}\}$的前n项和$T_{n}$.
答案: 跟踪训练4.解:
(1)由$S_n = n^2 - 15n$,
当$n \geq 2$时,可得$a_n = S_n - S_{n - 1} = n^2 - 15n - (n - 1)^2 + 15(n - 1) = 2n - 16$,
当$n = 1$时,$a_1 = S_1 = 1 - 15 = -14$,适合上式,
所以数列$\{a_n\}$的通项公式为$a_n = 2n - 16$.
(2)由$a_n = 2n - 16$,可得$c_n = |a_n| = |2n - 16|$,则$T_n = |a_1| + |a_2| + ·s + |a_n|$,
令$a_n \leq 0$,可得$n \leq 8$,
当$n \leq 8$时,$T_n = |a_1| + |a_2| + ·s + |a_n| = -a_1 - a_2 - ·s - a_n = 15n - n^2$,
当$n > 8$时,可得$T_n = |a_1| + |a_2| + ·s + |a_n| = -a_1 - a_2 - ·s - a_8 + a_9 + a_{10} + ·s + a_n$
$ = -(a_1 + a_2 + ·s + a_8) + (a_9 + a_{10} + ·s + a_n) = -S_8 + S_n - S_8 = S_n - 2S_8$,
因为$S_8 = -56$,所以$T_n = n^2 - 15n + 112$,
所以$T_n = \begin{cases}15n - n^2, n \leq 8, n \in N^*, \\n^2 - 15n + 112, n > 8, n \in N^*.\end{cases}$
1. 在等差数列$\{ a_{n}\}$中,已知$a_{1}=2,a_{3}=4$,则$S_{5}$=(
B
)

A.15
B.20
C.25
D.30
答案: 1.B设等差数列$\{a_n\}$的公差为$d$,则$a_3 = a_1 + 2d = 2 + 2d = 4$,$d = 1$,
所以$S_5 = 5a_1 + 10d = 10 + 10 = 20$.
2. 在等差数列$\{ a_{n}\}$中,$S_{n}$为其前n项和,$2a_{6}=a_{7}+5$,则$S_{9}$=(
B
)

A.40
B.45
C.50
D.55
答案: 2.B因为数列$\{a_n\}$是等差数列,所以$2a_6 = a_5 + a_7 = a_7 + 5$,所以$a_5 = 5$,
所以$S_9 = \frac{9(a_1 + a_9)}{2} = 9a_5 = 9 × 5 = 45$.
3. 在数列$\{ a_{n}\}$中,$S_{n}$是其前n项和,$a_{1}=3,a_{n + 1}=a_{n}+3(n\in\mathbf{N}^{*})$,则$\frac{S_{n}}{a_{n}}$=(
C
)

A.$\frac{n}{2}$
B.n
C.$\frac{n + 1}{2}$
D.$n + 1$
答案: 3.C在数列$\{a_n\}$中,$a_1 = 3$,$a_{n + 1} = a_n + 3$,
所以$\{a_n\}$是首项为3、公差为3的等差数列,
则$a_n = 3n$,$S_n = 3n + \frac{n(n - 1)}{2} × 3$
$ = \frac{3n^2 + 3n}{2}$,$\frac{S_n}{a_n} = \frac{3n}{2} × \frac{1}{3n} = \frac{n + 1}{2}$.
4. 数列$\{ a_{n}\}$的前n项和$S_{n}=-n^{2}+n$,则它的通项公式$a_{n}$=
$-2n + 2(n \in N^*)$
.
答案: 4.答案:$-2n + 2(n \in N^*)$
解析:当$n = 1$时,$a_1 = S_1 = -1 + 1 = 0$;
当$n \geq 2$且$n \in N^*$时,$a_n = S_n - S_{n - 1} = (-n^2 + n) - [-(n - 1)^2 + (n - 1)] = -2n + 2$,经检验,$n = 1$也适合该式.故$a_n = -2n + 2(n \in N^*)$.

查看更多完整答案,请扫码查看

关闭