2025年优化探究同步导学案高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第28页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
1. 在等比数列$\{a_{n}\}$中,每隔$k$项($k \in \mathbf{N}^{*}$)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.
2. 若$\{a_{n}\}$是等比数列,公比为$q$,则数列$\{\lambda a_{n}\}(\lambda \neq 0)$,$\{\frac{1}{a_{n}}\}$,$\{a_{n}^{2}\}$都是等比数列,且公比分别是$q$,$\frac{1}{q}$,$q^{2}$.
3. 若$\{a_{n}\}$,$\{b_{n}\}$是项数相同的等比数列,公比分别是$p$和$q$,那么$\{a_{n}b_{n}\}$与$\{\frac{a_{n}}{b_{n}}\}$也都是等比数列,公比分别为
2. 若$\{a_{n}\}$是等比数列,公比为$q$,则数列$\{\lambda a_{n}\}(\lambda \neq 0)$,$\{\frac{1}{a_{n}}\}$,$\{a_{n}^{2}\}$都是等比数列,且公比分别是$q$,$\frac{1}{q}$,$q^{2}$.
3. 若$\{a_{n}\}$,$\{b_{n}\}$是项数相同的等比数列,公比分别是$p$和$q$,那么$\{a_{n}b_{n}\}$与$\{\frac{a_{n}}{b_{n}}\}$也都是等比数列,公比分别为
$pq$
和$\frac{p}{q}$.
答案:
3.$pq$
[例4]
已知数列$\{a_{n}\}$的首项$a_{1} = 3$.
(1) 若$\{a_{n}\}$为等差数列,公差$d = 2$,证明数列$\{3^{a_{n}}\}$为等比数列;
(2) 若$\{a_{n}\}$为等比数列,公比$q =\frac{1}{9}$,证明数列$\{\log_{3}a_{n}\}$为等差数列.
已知数列$\{a_{n}\}$的首项$a_{1} = 3$.
(1) 若$\{a_{n}\}$为等差数列,公差$d = 2$,证明数列$\{3^{a_{n}}\}$为等比数列;
(2) 若$\{a_{n}\}$为等比数列,公比$q =\frac{1}{9}$,证明数列$\{\log_{3}a_{n}\}$为等差数列.
答案:
[证明]
(1)由$a_{1} = 3,d = 2$,得$\{ a_{n}\}$的通项公式为$a_{n} = 2n + 1$.
设$b_{n} = 3^{a_{n}}$,则$\frac{b_{n + 1}}{b_{n}} = \frac{3^{a_{n + 1}}}{3^{a_{n}}} = \frac{3^{2(n + 1) + 1}}{3^{2n + 1}} = 9$.又因为
$b_{1} = 3^{3} = 27$,
所以,$\{ 3^{a_{n}}\}$是以27为首项,9为公比的等比
数列.
(2)由$a_{1} = 3,q = \frac{1}{9}$,得$a_{n} = 3 × (\frac{1}{9})^{n - 1} = 3^{3 - 2n}$.
两边取以3为底的对数,得$\log_{3}a_{n} = \log_{3}3^{3 - 2n} = 3 - 2n$.
所以$\log_{3}a_{n + 1} - \log_{3}a_{n} = \lbrack 3 - 2(n + 1)\rbrack - (3 - 2n) = - 2$.又因为$\log_{3}a_{1} = \log_{3}3 = 1$,
所以$\{\log_{3}a_{n}\}$是首项为1,公差为$- 2$的等
差数列.
(1)由$a_{1} = 3,d = 2$,得$\{ a_{n}\}$的通项公式为$a_{n} = 2n + 1$.
设$b_{n} = 3^{a_{n}}$,则$\frac{b_{n + 1}}{b_{n}} = \frac{3^{a_{n + 1}}}{3^{a_{n}}} = \frac{3^{2(n + 1) + 1}}{3^{2n + 1}} = 9$.又因为
$b_{1} = 3^{3} = 27$,
所以,$\{ 3^{a_{n}}\}$是以27为首项,9为公比的等比
数列.
(2)由$a_{1} = 3,q = \frac{1}{9}$,得$a_{n} = 3 × (\frac{1}{9})^{n - 1} = 3^{3 - 2n}$.
两边取以3为底的对数,得$\log_{3}a_{n} = \log_{3}3^{3 - 2n} = 3 - 2n$.
所以$\log_{3}a_{n + 1} - \log_{3}a_{n} = \lbrack 3 - 2(n + 1)\rbrack - (3 - 2n) = - 2$.又因为$\log_{3}a_{1} = \log_{3}3 = 1$,
所以$\{\log_{3}a_{n}\}$是首项为1,公差为$- 2$的等
差数列.
跟踪训练
3. (多选)已知数列$\{a_{n}\}$是等比数列,那么下列数列一定是等比数列的是(
A.$\{\frac{1}{a_{n}}\}$
B.$\{a_{n}a_{n + 1}\}$
C.$\{\lg(a_{n}^{2})\}$
D.$\{a_{n} + a_{n + 1}\}$
3. (多选)已知数列$\{a_{n}\}$是等比数列,那么下列数列一定是等比数列的是(
AB
)A.$\{\frac{1}{a_{n}}\}$
B.$\{a_{n}a_{n + 1}\}$
C.$\{\lg(a_{n}^{2})\}$
D.$\{a_{n} + a_{n + 1}\}$
答案:
由题意知$\{ a_{n}\}$为等比数
列,设其公比为$q(q \neq 0)$;
对于A,$\frac{1}{a_{n}} = \frac{1}{a_{1}q^{n - 1}} = \frac{1}{a_{1}} · (\frac{1}{q})^{n - 1}$,
$\therefore$数列$\{\frac{1}{a_{n}}\}$是以$\frac{1}{a_{1}}$为首项,$\frac{1}{q}$为公比的等比数列,故A正确;
对于B,$\frac{a_{n + 1}a_{n + 2}}{a_{n}a_{n + 1}} = \frac{a_{n + 2}}{a_{n}} = q^{2}$,$\therefore$数列$\{ a_{n}a_{n + 1}\}$是以$a_{1}a_{2}$为首项,$q^{2}$为公比的等比数列,故B正确;
对于C,当$a_{n} = 1$时,$\lg(a_{n}^{2}) = 0$,数列$\{\lg(a_{n}^{2})\}$不是等比数列,故C错误;
对于D,当$q = - 1$时,$a_{n} + a_{n + 1} = 0$,数列$\{ a_{n} + a_{n + 1}\}$不是等比数列,故D错误.
列,设其公比为$q(q \neq 0)$;
对于A,$\frac{1}{a_{n}} = \frac{1}{a_{1}q^{n - 1}} = \frac{1}{a_{1}} · (\frac{1}{q})^{n - 1}$,
$\therefore$数列$\{\frac{1}{a_{n}}\}$是以$\frac{1}{a_{1}}$为首项,$\frac{1}{q}$为公比的等比数列,故A正确;
对于B,$\frac{a_{n + 1}a_{n + 2}}{a_{n}a_{n + 1}} = \frac{a_{n + 2}}{a_{n}} = q^{2}$,$\therefore$数列$\{ a_{n}a_{n + 1}\}$是以$a_{1}a_{2}$为首项,$q^{2}$为公比的等比数列,故B正确;
对于C,当$a_{n} = 1$时,$\lg(a_{n}^{2}) = 0$,数列$\{\lg(a_{n}^{2})\}$不是等比数列,故C错误;
对于D,当$q = - 1$时,$a_{n} + a_{n + 1} = 0$,数列$\{ a_{n} + a_{n + 1}\}$不是等比数列,故D错误.
4. 设$\{a_{n}\}$是各项为正数的无穷数列,$A_{i}$是边长为$a_{i}$,$a_{i + 1}$的矩形面积$(i = 1,2,·s)$,则$\{A_{n}\}$为等比数列的充要条件为(
A.$\{a_{n}\}$是等比数列
B.$a_{1},a_{3},·s,a_{2n - 1},·s$或$a_{2},a_{4},·s,a_{2n},·s$是等比数列
C.$a_{1},a_{3},·s,a_{2n - 1},·s$和$a_{2},a_{4},·s,a_{2n},·s$均是等比数列
D.$a_{1},a_{3},·s,a_{2n - 1},·s$和$a_{2},a_{4},·s,a_{2n},·s$均是等比数列,且公比相同
D
)A.$\{a_{n}\}$是等比数列
B.$a_{1},a_{3},·s,a_{2n - 1},·s$或$a_{2},a_{4},·s,a_{2n},·s$是等比数列
C.$a_{1},a_{3},·s,a_{2n - 1},·s$和$a_{2},a_{4},·s,a_{2n},·s$均是等比数列
D.$a_{1},a_{3},·s,a_{2n - 1},·s$和$a_{2},a_{4},·s,a_{2n},·s$均是等比数列,且公比相同
答案:
$\because A_{n} = a_{a_{i + 1}}$,若$\{ A_{n}\}$为等比数列,则$\frac{A_{n + 1}}{A_{n}} = \frac{a_{n + 1}a_{n + 2}}{a_{n}a_{n + 1}} = \frac{a_{n + 2}}{a_{n}}$为常数,即$\frac{A_{2}}{A_{1}} = \frac{a_{3}}{a_{1}},\frac{A_{3}}{A_{2} } = \frac{a_{4}}{a_{2}},·s,\therefore a_{1},a_{3},a_{5},·s,a_{2n - 1}·s$和$a_{2},a_{4},·s,a_{2n},·s$均是等比数列,且公比
相等.反之,若奇数项和偶数项分别成等比
数列,且公比相等,设为$q$,则$\frac{A_{n + 1}}{A_{n}} = \frac{a_{n + 2}}{a_{n}} = q$,从而$\{ A_{n}\}$为等比数列.故D正确.
相等.反之,若奇数项和偶数项分别成等比
数列,且公比相等,设为$q$,则$\frac{A_{n + 1}}{A_{n}} = \frac{a_{n + 2}}{a_{n}} = q$,从而$\{ A_{n}\}$为等比数列.故D正确.
查看更多完整答案,请扫码查看