17. 下右图是一个小商场的纵截面图(矩形$ABCD$),$AD$是商场的顶部,$BC$是商场的地面,$BC = 20\ m$,$AB$和$CD$是商场的两面墙壁,$MN$是顶部正中央的一个长方形的灯饰($AM = DN$). 小张同学带了一块镜子和一根激光笔,他先把激光笔挂在墙壁$CD$的$G$处,镜子水平放在地面$F$处,$CG = CF = 1.6\ m$,发现激光笔的反射光照到了$N$处;再把激光笔挂在墙壁$AB$的$L$处,镜子水平放在地面$P$处,$LB = 1.6\ m$,$BP = 2.4\ m$,发现激光笔的反射光恰好又照到了$N$处,请计算$AB$的高度和$MN$的长度.

答案:
17.解:过点N作NT⊥BC于T,则四边形ABTN,四边形CDNT都是矩形,设AB = NT = CD = x(cm).
∵∠B = ∠PTN = 90°,∠NPT = ∠LPB,
∴△LBP∽△NTP,
∴$\frac{LB}{NT}=\frac{PB}{PT}$,
∴PT = $\frac{3}{2}$x,
同理可证,△GCF∽△NTF,
可得FT = NT = x,
∵BP + PT + TF + CF = 20,
∴2.4 + $\frac{3}{2}$x + x + 1.6 = 20,
∴x = 6.4,
∴DN = CT = 6.4 + 1.6 = 8(m),
AB = CD = 6.4(m),
∴AM = DN = 8(m),
∴MN = AD - AM - DN = 20 - 16 = 4(m),
答:AB的高度为6.4m,MN的长度为4m.
∵∠B = ∠PTN = 90°,∠NPT = ∠LPB,
∴△LBP∽△NTP,
∴$\frac{LB}{NT}=\frac{PB}{PT}$,
∴PT = $\frac{3}{2}$x,
同理可证,△GCF∽△NTF,
可得FT = NT = x,
∵BP + PT + TF + CF = 20,
∴2.4 + $\frac{3}{2}$x + x + 1.6 = 20,
∴x = 6.4,
∴DN = CT = 6.4 + 1.6 = 8(m),
AB = CD = 6.4(m),
∴AM = DN = 8(m),
∴MN = AD - AM - DN = 20 - 16 = 4(m),
答:AB的高度为6.4m,MN的长度为4m.
18. 如图,在等边三角形$ABC$中,点$D$,$E$分别是边$BC$,$CA$上的点,且$BD = CE$,连结$AD$,$BE$交于点$P$.
(1) 求证:$\triangle ABE \cong \triangle CAD$.
(2) 若$AE:EC = 5:3$,求$BP:PE$的值.
(3) 若点$P$恰好落在以$AC$为直径的圆上,求$AE:EC$的值.

(1) 求证:$\triangle ABE \cong \triangle CAD$.
(2) 若$AE:EC = 5:3$,求$BP:PE$的值.
(3) 若点$P$恰好落在以$AC$为直径的圆上,求$AE:EC$的值.
答案:
18.
(1)证明:
∵△ABC是等边三角形,
∴AB = AC = BC,∠BAC = ∠BCA = 60°,
∵BD = CE,
∴CD = AE,
∴△ABE≌△CAD(SAS).


(2)解:过点E作EF//AD交CD于F,
∴$\frac{CE}{AE}=\frac{CF}{DF}$,
∵AE:EC = 5:3,设AE = CD = 5a,CE = BD = 3a,
∴$\frac{CE}{AE}=\frac{CF}{DF}=\frac{3}{5}$,
∴$\frac{AC}{AE}=\frac{CD}{DF}=\frac{8}{5}$,
∴DF = $\frac{5}{8}$CD = $\frac{5}{8}$·5a = $\frac{25}{8}$a,
∵PD//EF,
∴$\frac{BP}{PE}=\frac{BD}{DF}=\frac{3a}{\frac{25}{8}a}=\frac{24}{25}$,
∴BP:PE的值为$\frac{24}{25}$。
(3)连结CP,由
(1)知:△ABE≌△CAD,
∴∠CAD = ∠ABE,
∴∠APE = ∠BAP + ∠ABP = ∠BAP + ∠PAE = 60°,
∴∠DPE = 120°,
∴∠DPE + ∠DCE = 120° + 60° = 180°,
∴C,D,P,E四点共圆,
∵点P恰好落在以AC为直径的圆上,
∴∠DPC = ∠APC = 90°,
∴点P也落在以CD为直径的圆上,
∵∠APE = 60°,
∴∠CPE = 30°,
连结DE,则∠CED = 90°,
∠CDE = ∠CPE = 30°,
∴$\frac{CD}{CE}=2$,
∵CD = AE,
∴$\frac{AE}{EC}=2$。
18.
(1)证明:
∵△ABC是等边三角形,
∴AB = AC = BC,∠BAC = ∠BCA = 60°,
∵BD = CE,
∴CD = AE,
∴△ABE≌△CAD(SAS).
(2)解:过点E作EF//AD交CD于F,
∴$\frac{CE}{AE}=\frac{CF}{DF}$,
∵AE:EC = 5:3,设AE = CD = 5a,CE = BD = 3a,
∴$\frac{CE}{AE}=\frac{CF}{DF}=\frac{3}{5}$,
∴$\frac{AC}{AE}=\frac{CD}{DF}=\frac{8}{5}$,
∴DF = $\frac{5}{8}$CD = $\frac{5}{8}$·5a = $\frac{25}{8}$a,
∵PD//EF,
∴$\frac{BP}{PE}=\frac{BD}{DF}=\frac{3a}{\frac{25}{8}a}=\frac{24}{25}$,
∴BP:PE的值为$\frac{24}{25}$。
(3)连结CP,由
(1)知:△ABE≌△CAD,
∴∠CAD = ∠ABE,
∴∠APE = ∠BAP + ∠ABP = ∠BAP + ∠PAE = 60°,
∴∠DPE = 120°,
∴∠DPE + ∠DCE = 120° + 60° = 180°,
∴C,D,P,E四点共圆,
∵点P恰好落在以AC为直径的圆上,
∴∠DPC = ∠APC = 90°,
∴点P也落在以CD为直径的圆上,
∵∠APE = 60°,
∴∠CPE = 30°,
连结DE,则∠CED = 90°,
∠CDE = ∠CPE = 30°,
∴$\frac{CD}{CE}=2$,
∵CD = AE,
∴$\frac{AE}{EC}=2$。
查看更多完整答案,请扫码查看