第9页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
1. 计算下面物体的体积。

答案:
30×18×13=7020(cm³)
16×16×16=4096(cm³)
[提示]长方体的体积=长×宽×高,
正方体的体积=棱长×棱长×棱长。
16×16×16=4096(cm³)
[提示]长方体的体积=长×宽×高,
正方体的体积=棱长×棱长×棱长。
2. 下面两个图形分别表示一个长方体的前面和右面,这个长方体的体积是(

$A. 36 cm^3$
$B. 12 cm^3$
$C. 18 cm^3$
A
)。$A. 36 cm^3$
$B. 12 cm^3$
$C. 18 cm^3$
答案:
A [提示]本题考查的是长方体体积的计算。先根据所给图形确定长方体的长、宽、高,再根据长方体体积计算公式计算。
3. 如右图,把一块石头浸没在一个棱长为6分米的正方体容器里,水面的高度由3.4分米上升到4分米。这块石头的体积是多少立方分米?

答案:
6×6×(4-3.4)=21.6(立方分米)
[提示]水上升部分的体积就是石头的体积,用容器的底面积乘水面上升的高度即可解答。
[提示]水上升部分的体积就是石头的体积,用容器的底面积乘水面上升的高度即可解答。
4. 方糖是用细晶粒精制砂糖为原料压制成的半方块状(即正方体的一半)的高级糖产品。它的特点是质量纯净,洁白而有光泽;糖块棱角完整,不易碎裂;在水中能够快速溶解,溶液清晰透明。已知一块方糖的底面是一个边长1.8厘米的正方形,则它的体积是多少立方厘米?
答案:
1.8×1.8×1.8÷2=2.916(立方厘米)
[提示]求方糖的体积就是求棱长1.8厘米的正方体体积的一半。
[提示]求方糖的体积就是求棱长1.8厘米的正方体体积的一半。
5. 原创题 空间观念 学习“蜡烛的变化”时,小华所在的小组做了一支蜡烛。将一块棱长6厘米的正方体蜡块熔化,放入一个长3厘米、宽2.5厘米的长方体模具,制作成蜡烛。
(1)实验发现:在制作蜡烛的过程中,蜡块仅仅是(
(2)制作成的蜡烛的高是多少厘米?(损耗忽略不计)
(1)实验发现:在制作蜡烛的过程中,蜡块仅仅是(
形状
)发生了变化。(2)制作成的蜡烛的高是多少厘米?(损耗忽略不计)
6×6×6÷(3×2.5)=28.8(厘米)
答案:
(1)形状
(2)6×6×6÷(3×2.5)=28.8(厘米)
(1)形状
(2)6×6×6÷(3×2.5)=28.8(厘米)
查看更多完整答案,请扫码查看