2025年赢在假期期末加寒假八年级数学沪科版合肥工业大学出版社


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年赢在假期期末加寒假八年级数学沪科版合肥工业大学出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年赢在假期期末加寒假八年级数学沪科版合肥工业大学出版社》

10. 如图所示,在$\triangle ABC$中,$AB = BC = CA$,$\angle ABC=\angle C = 60^{\circ}$,$BD = CE$,$AD$与$BE$相交于点$F$,则$\angle AFE = $__________.
答案: $60^{\circ}$
11. 如图,在$\triangle ABC$中,$AB = AC$. 作$AD\perp AB$交$BC$的延长线于点$D$,作$AE// BD$,$CE\perp AC$,且$AE$,$CE$相交于点$E$. 求证:$AD = CE$.
BC
答案: 证明:$\because AE// BD$,$\therefore \angle EAC=\angle ACB$.$\because AB = AC$,$\therefore \angle B=\angle ACB$.$\therefore \angle EAC=\angle B$. 又 $\because \angle BAD=\angle ACE = 90^{\circ}$,$AB = AC$,$\therefore \triangle ABD\cong \triangle CAE$.$\therefore AD = CE$.
12. 如图所示,在$\triangle ABC$中,$AB = BC$,$\angle ABC = 90^{\circ}$. $F$为$AB$延长线上一点,点$E$在$BC$上,$BE = BF$,连接$AE$,$EF$和$CF$. 求证:$AE = CF$.
BF
答案: 证明:$\because \angle ABC = 90^{\circ}$,$F$ 为 $AB$ 延长线上一点,$\therefore \angle ABC=\angle CBF = 90^{\circ}$. 又 $\because AB = BC$,$BE = BF$,$\therefore \triangle ABE\cong \triangle CBF$.$\therefore AE = CF$.
13. 如图,在$Rt\triangle ABC$中,$\angle ABC = 90^{\circ}$,点$D$在边$AB$上,使$DB = BC$,过点$D$作$EF\perp AC$,分别交$AC$,$CB$的延长线于点$E$,$F$. 求证:$AB = BF$.
BC
答案: 证明:$\because \angle ABC = 90^{\circ}$,$EF\perp AC$,$\therefore \angle ABF=\angle AED = 90^{\circ}$,又 $\because \angle BDF=\angle EDA$,$\therefore \angle A=\angle F$. 又 $\because \angle FBD=\angle ABC$,$\angle A=\angle F$,$DB = BC$,$\therefore \triangle FBD\cong \triangle ABC$,$\therefore AB = BF$.
14. 如图,在四边形$ABCD$中,已知$BD$平分$\angle ABC$,$\angle A+\angle C = 180^{\circ}$,求证:$AD = CD$.
答案: 证明:过点 $D$ 作 $DE\perp BA$,交 $BA$ 的延长线于点 $E$,过点 $D$ 作 $DF\perp BC$,垂足为 $F$,则 $DE = DF$.$\because \angle BAD+\angle C = 180^{\circ}$,$\angle BAD+\angle EAD = 180^{\circ}$,$\therefore \angle EAD=\angle C$. 在 $\triangle ADE$ 和 $\triangle CDF$ 中,$\begin{cases}\angle EAD=\angle C,\\\angle AED=\angle CFD,\\DE = DF,\end{cases}$ $\therefore \triangle ADE\cong \triangle CDF(AAS)$,$\therefore AD = CD$.

查看更多完整答案,请扫码查看

关闭