2025年优化探究同步导学案高中化学选择性必修1人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年优化探究同步导学案高中化学选择性必修1人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年优化探究同步导学案高中化学选择性必修1人教版》

3. 随着聚酯工业的快速发展,工业上对氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为当前科学研究的热点。Deacon 直接氧化法可按下列催化过程进行:
$CuCl_2(s) = CuCl(s) + \frac{1}{2}Cl_2(g) \Delta H_1 = +83 kJ · mol^{-1}$ ①;
$CuCl(s) + \frac{1}{2}O_2(g) = CuO(s) + \frac{1}{2}Cl_2(g) \Delta H_2 = -20 kJ · mol^{-1}$ ②;
$CuO(s) + 2HCl(g) = CuCl_2(s) + H_2O(g) \Delta H_3 = -121 kJ · mol^{-1}$ ③。
则氯化氢与氧气反应生成氯气和水蒸气的热化学方程式为
$4HCl(g)+O_2(g)\xlongequal\ 2Cl_2(g)+2H_2O(g)\ \Delta H=-116\ kJ· mol^{-1}$
答案: 3.答案$4HCl(g)+O_2(g)\xlongequal\ 2Cl_2(g)+2H_2O(g)\ \Delta H=-116\ kJ· mol^{-1}$
解析:根据盖斯定律,①$×2+$②$×2+$③$×2$可得$4HCl(g)+O_2(g)\xlongequal\ 2Cl_2(g)+2H_2O(g)\ \Delta H=2\Delta H_1+2\Delta H_2+2\Delta H_3=(+83\ kJ· mol^{-1})×2+(-20\ kJ· mol^{-1})×2+(-121\ kJ· mol^{-1})×2=-116\ kJ· mol^{-1}$。
1. 能源及能源的综合利用
(1)概念:自然界中,能为人类提供能量的物质或物质运动统称能源。
(2)种类:包括
太阳能
风能
水能
、生物质能、地热能、海洋能、核能、
化石燃料
等。
(3)能源开发的重要意义
①我国的能源结构
目前,我国能源消费快速增长,消费结构以
为主,以
石油
天然气
为辅,以
核能
风能
、太阳能为补充。
②能源危机的解决方法
一方面必须“
开源
”,即开发核能、风能、太阳能等新能源;另一方面需要“
节流
”,加大节能减排的力度,提高能源的
利用效率

(4)燃料综合应用
①直接燃煤的危害:不仅利用效率低,而且会产生大量固体垃圾和多种有害气体。
②煤的综合利用方法:工业上通过煤的干馏、气化和液化等方法来实现煤的综合利用。
答案: 1.
(2)太阳能 风能 水能 化石燃料
(3)煤 石油 天然气 核能 风能 开源 节流 利用效率
2. 摩尔燃烧焓
(1)定义:在一定
反应温度和压强
条件下,1 mol
纯物质
完全氧化为同温下的指定产物时的
焓变
,并指定物质中所含有的氮元素氧化为
$N_2(g)$
、氢元素氧化为
$H_2O(l)$
、碳元素氧化为
$CO_2(g)$

(2)意义:甲烷的摩尔燃烧焓为$-890.3 kJ · mol^{-1}$或$\Delta H = -890.3 kJ · mol^{-1}$,它表示 298 K、101 kPa 时,
1 mol
甲烷完全燃烧生成
$CO_2$
液态$H_2O$
时放出 890.3 kJ 的热量。
(3)计算:由摩尔燃烧焓的定义可知:298 K、101 kPa 时,可燃物完全燃烧产生的热量 = 可燃物的物质的量×其摩尔燃烧焓,即$Q_{放} = n$(可燃物)×|$\Delta H$|以及物质的摩尔燃烧焓:$\Delta H =$。此公式中的$\Delta H$是指物质的摩尔燃烧焓,而不是指一般反应的反应热。
答案: 2.
(1)反应温度和压强 纯物质 焓变 $N_2(g)$ $H_2O(l)$ $CO_2(g)$
(2)$1\ mol\ CO_2$ 液态$H_2O$
1. 我国目前使用的主要能源是化石燃料。 (
)
2. 科学家正在研究开发太阳能、风能、潮汐能等新能源,并取得了一定进展。 (
)
3. 1 mol$H_2$完全燃烧生成 1 mol 水蒸气时放出的热量为$H_2$的摩尔燃烧焓。 (
×
)
4. 摩尔燃烧焓的数值与参与反应的可燃物的物质的量成正比。 (
×
)
答案: 1.√ 2.√ 3.× 4.×
1. 1.5 g 火箭燃料二甲基肼$(CH_3—NH—NH—CH_3)$完全燃烧,放出 50 kJ 热量,则二甲基肼的摩尔燃烧焓$\Delta H$为
-2000 kJ/mol
答案: 1.提示:$1.5\ g$二甲基肼的物质的量是$0.025\ mol$,根据摩尔燃烧焓的定义可知,$1\ mol$二甲基肼完全燃烧放出的热量应该为$(\frac{1}{0.025}×50)\ kJ = 2000\ kJ$,即二甲基肼的摩尔燃烧焓$\Delta H = -2000\ kJ/mol$。
2. 已知:$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -92.4 kJ · mol^{-1}$;
$N_2(g) + O_2(g) = 2NO(g) \Delta H = +180 kJ · mol^{-1}$;
$2H_2(g) + O_2(g) = 2H_2O(l) \Delta H = -571.6 kJ · mol^{-1}$。
试写出表示氨的摩尔燃烧焓的热化学方程式:
$NH_3(g)+\frac{3}{4}O_2(g)\xlongequal\ \frac{1}{2}N_2(g)+\frac{3}{2}H_2O(l)\ \Delta H = -382.5\ kJ· mol^{-1}$
答案: 2.提示:$NH_3(g)+\frac{3}{4}O_2(g)\xlongequal\ \frac{1}{2}N_2(g)+\frac{3}{2}H_2O(l)\ \Delta H = -382.5\ kJ· mol^{-1}$,本题考查热化学方程式的计算,从盖斯定律入手,①$N_2(g)+3H_2(g)\xlongequal\ 2NH_3(g)$,②$2H_2(g)+O_2(g)\xlongequal\ 2H_2O(l)$,②$×\frac{3}{4}-$①得出$NH_3(g)+\frac{3}{4}O_2(g)\xlongequal\ \frac{1}{2}N_2(g)+\frac{3}{2}H_2O(l)\ \Delta H=(-571.6×\frac{3}{4}+\frac{92.4}{2})\ kJ· mol^{-1}=-382.5\ kJ· mol^{-1}$。

查看更多完整答案,请扫码查看

关闭