2026年一本密卷高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
18. (17分)(2025·湖南省郴州市三模)空间直角坐标系$Oxyz$中,任何一个平面的方程都能表示成$ax + by + cz + d = 0$(其中$a,b,c,d$均为常数,$a^{2}+b^{2}+c^{2}\neq 0),n=(a,b,c)$为该平面的一个法向量.已知球$O$的半径为$4$,点$A,B,C$均在球$O$的球面上,以$OA,OB,OC$所在直线分别为$x,y,z$轴建立空间直角坐标系$Oxyz$,如图所示.平面$OBC$内的点$E$在球面上,点$E$在$y$轴上的投影在$y$轴的正半轴上,$CE = 4$,过直线$CE$作球$O$的截面$\alpha$,使得平面$\alpha\perp$平面$OBC$,设截面$\alpha$与球$O$球面的交线为圆$M$($M$为线段$CE$的中点).

(1)求点$E$的坐标;
(2)若平面$\beta:2x+\sqrt{3}y - z = 1$,证明:平面$\alpha\perp$平面$\beta$;
(3)已知点$B$在平面$\gamma:\lambda x+\mu y + tz = 4$内,设线段$ME$在平面$\alpha$内绕着点$M$逆时针旋转$\theta$弧度至$MH$,点$H$在圆$M$上,且$\theta\in[0,2\pi)$,过$H$作$HP\perp$平面$AOB$,垂足为点$P$.
①用$\theta$表示点$H$的坐标;
②若$\sqrt{3}\lambda=-t=\sqrt{3}$,求点$H$到平面$\gamma$距离的最大值;
③若$\lambda = 0,t=-\frac{19}{4},G(0,\sqrt{3}-1,4)$,当直线$GP$与平面$Y$所成的角最小时,求$\cos\theta$的值.
(1)求点$E$的坐标;
(2)若平面$\beta:2x+\sqrt{3}y - z = 1$,证明:平面$\alpha\perp$平面$\beta$;
(3)已知点$B$在平面$\gamma:\lambda x+\mu y + tz = 4$内,设线段$ME$在平面$\alpha$内绕着点$M$逆时针旋转$\theta$弧度至$MH$,点$H$在圆$M$上,且$\theta\in[0,2\pi)$,过$H$作$HP\perp$平面$AOB$,垂足为点$P$.
①用$\theta$表示点$H$的坐标;
②若$\sqrt{3}\lambda=-t=\sqrt{3}$,求点$H$到平面$\gamma$距离的最大值;
③若$\lambda = 0,t=-\frac{19}{4},G(0,\sqrt{3}-1,4)$,当直线$GP$与平面$Y$所成的角最小时,求$\cos\theta$的值.
答案:
$1. (1)$
解:已知球$O$半径$R = 4,$设$E(0,y,z),$因为$E$在球面上,所以$y^{2}+z^{2}=16,$又$C(0,0,4),$$CE = 4,$根据空间两点间距离公式$\sqrt{(y - 0)^{2}+(z - 4)^{2}}=4,$即$y^{2}+(z - 4)^{2}=16。$
由$\begin{cases}y^{2}+z^{2}=16\\y^{2}+(z - 4)^{2}=16\end{cases},$将$y^{2}=16 - z^{2}$代入$y^{2}+(z - 4)^{2}=16$得:
$16 - z^{2}+z^{2}-8z + 16 = 16,$
化简得$8z = 16,$解得$z = 2,$则$y^{2}=16 - 4 = 12,$因为点$E$在$y$轴上的投影在$y$轴正半轴上,所以$y = 2\sqrt{3}。$
所以$E(0,2\sqrt{3},2)。$
$2. (2)$
解:因为$M$为$CE$中点,$C(0,0,4),$$E(0,2\sqrt{3},2),$则$M(0,\sqrt{3},3)。$
平面$OBC$的法向量$\overrightarrow{n_{1}}=(1,0,0),$设平面$\alpha$的法向量$\overrightarrow{n}=(x,y,z),$$\overrightarrow{CE}=(0,2\sqrt{3}, - 2),$$\overrightarrow{ME}=(0,\sqrt{3}, - 1)。$
因为平面$\alpha\perp$平面$OBC,$且平面$\alpha$过$CE,$$\overrightarrow{CE}·\overrightarrow{n}=2\sqrt{3}y-2z = 0,$取$y = 1,$则$z=\sqrt{3},$$x = 0,$所以$\overrightarrow{n}=(0,1,\sqrt{3})。$
平面$\beta:2x+\sqrt{3}y - z = 1$的法向量$\overrightarrow{n_{2}}=(2,\sqrt{3},-1)。$
计算$\overrightarrow{n}·\overrightarrow{n_{2}}=0×2 + 1×\sqrt{3}+\sqrt{3}×(-1)=0。$
因为$\overrightarrow{n}·\overrightarrow{n_{2}} = 0,$所以$\overrightarrow{n}\perp\overrightarrow{n_{2}},$所以平面$\alpha\perp$平面$\beta。$
$3. (3)$
$①$
解:$\overrightarrow{ME}=(0,\sqrt{3}, - 1),$$\vert\overrightarrow{ME}\vert=\sqrt{(\sqrt{3})^{2}+(-1)^{2}} = 2,$$M(0,\sqrt{3},3)。$
设$H(x,y,z),$$\overrightarrow{MH}=(\vert\overrightarrow{MH}\vert\cos\theta,\vert\overrightarrow{MH}\vert\sin\theta,0)($因为$H$在平面$\alpha$内绕$M$旋转,$z$方向不变$),$$\vert\overrightarrow{MH}\vert=\vert\overrightarrow{ME}\vert = 2。$
所以$H(0,\sqrt{3}+2\sin\theta,3 + 2\cos\theta)。$
$②$
解:因为$\sqrt{3}\lambda=-t=\sqrt{3},$则$\lambda = 1,$$t=-\sqrt{3},$平面$\gamma:x+\mu y-\sqrt{3}z = 4,$又$B(0,4,0)$在平面$\gamma$内,所以$4\mu-0 = 4,$$\mu = 1,$平面$\gamma:x + y-\sqrt{3}z = 4。$
点$H(0,\sqrt{3}+2\sin\theta,3 + 2\cos\theta),$根据点$(x_{0},y_{0},z_{0})$到平面$Ax+By + Cz+D = 0$的距离公式$d=\frac{\vert Ax_{0}+By_{0}+Cz_{0}+D\vert}{\sqrt{A^{2}+B^{2}+C^{2}}}。$
则$d=\frac{\vert0+\sqrt{3}+2\sin\theta-\sqrt{3}(3 + 2\cos\theta)-4\vert}{\sqrt{1 + 1+3}}=\frac{\vert2\sin\theta-2\sqrt{3}\cos\theta-4 - 2\sqrt{3}\vert}{\sqrt{5}}。$
化简$2\sin\theta-2\sqrt{3}\cos\theta=4(\frac{1}{2}\sin\theta-\frac{\sqrt{3}}{2}\cos\theta)=4\sin(\theta-\frac{\pi}{3})。$
所以$d=\frac{\vert4\sin(\theta-\frac{\pi}{3})-4 - 2\sqrt{3}\vert}{\sqrt{5}},$当$\sin(\theta-\frac{\pi}{3})=-1$时,$d_{max}=\frac{\vert-4-4 - 2\sqrt{3}\vert}{\sqrt{5}}=\frac{8 + 2\sqrt{3}}{\sqrt{5}}=\frac{8\sqrt{5}+2\sqrt{15}}{5}。$
$③$易得平面$γ$的一个法向量$μ_2=(0,1,-\frac{19}{4})$
因为$P(-2sinθ,\sqrt{3}+\sqrt{3}cosθ,0),G(0,\sqrt{3}-1,4)$
所以$\overrightarrow{GP}=(-2sinθ,1+\sqrt{3}cosθ,-4)$
设直线$GP$与平面$Y$所成的角为$φ$
所以$sinφ=\frac{|1+\sqrt{3}cosθ+19|}{\sqrt{1+(-\frac{19}{4})}²\sqrt{4sin²θ+(1+\sqrt{3}cosθ+16)}}$
得到$cosθ=-\frac{\sqrt{3}}{23}$时$,sinφ$的值最小
即直线$GP$与平面$γ$所成的角最小
解:已知球$O$半径$R = 4,$设$E(0,y,z),$因为$E$在球面上,所以$y^{2}+z^{2}=16,$又$C(0,0,4),$$CE = 4,$根据空间两点间距离公式$\sqrt{(y - 0)^{2}+(z - 4)^{2}}=4,$即$y^{2}+(z - 4)^{2}=16。$
由$\begin{cases}y^{2}+z^{2}=16\\y^{2}+(z - 4)^{2}=16\end{cases},$将$y^{2}=16 - z^{2}$代入$y^{2}+(z - 4)^{2}=16$得:
$16 - z^{2}+z^{2}-8z + 16 = 16,$
化简得$8z = 16,$解得$z = 2,$则$y^{2}=16 - 4 = 12,$因为点$E$在$y$轴上的投影在$y$轴正半轴上,所以$y = 2\sqrt{3}。$
所以$E(0,2\sqrt{3},2)。$
$2. (2)$
解:因为$M$为$CE$中点,$C(0,0,4),$$E(0,2\sqrt{3},2),$则$M(0,\sqrt{3},3)。$
平面$OBC$的法向量$\overrightarrow{n_{1}}=(1,0,0),$设平面$\alpha$的法向量$\overrightarrow{n}=(x,y,z),$$\overrightarrow{CE}=(0,2\sqrt{3}, - 2),$$\overrightarrow{ME}=(0,\sqrt{3}, - 1)。$
因为平面$\alpha\perp$平面$OBC,$且平面$\alpha$过$CE,$$\overrightarrow{CE}·\overrightarrow{n}=2\sqrt{3}y-2z = 0,$取$y = 1,$则$z=\sqrt{3},$$x = 0,$所以$\overrightarrow{n}=(0,1,\sqrt{3})。$
平面$\beta:2x+\sqrt{3}y - z = 1$的法向量$\overrightarrow{n_{2}}=(2,\sqrt{3},-1)。$
计算$\overrightarrow{n}·\overrightarrow{n_{2}}=0×2 + 1×\sqrt{3}+\sqrt{3}×(-1)=0。$
因为$\overrightarrow{n}·\overrightarrow{n_{2}} = 0,$所以$\overrightarrow{n}\perp\overrightarrow{n_{2}},$所以平面$\alpha\perp$平面$\beta。$
$3. (3)$
$①$
解:$\overrightarrow{ME}=(0,\sqrt{3}, - 1),$$\vert\overrightarrow{ME}\vert=\sqrt{(\sqrt{3})^{2}+(-1)^{2}} = 2,$$M(0,\sqrt{3},3)。$
设$H(x,y,z),$$\overrightarrow{MH}=(\vert\overrightarrow{MH}\vert\cos\theta,\vert\overrightarrow{MH}\vert\sin\theta,0)($因为$H$在平面$\alpha$内绕$M$旋转,$z$方向不变$),$$\vert\overrightarrow{MH}\vert=\vert\overrightarrow{ME}\vert = 2。$
所以$H(0,\sqrt{3}+2\sin\theta,3 + 2\cos\theta)。$
$②$
解:因为$\sqrt{3}\lambda=-t=\sqrt{3},$则$\lambda = 1,$$t=-\sqrt{3},$平面$\gamma:x+\mu y-\sqrt{3}z = 4,$又$B(0,4,0)$在平面$\gamma$内,所以$4\mu-0 = 4,$$\mu = 1,$平面$\gamma:x + y-\sqrt{3}z = 4。$
点$H(0,\sqrt{3}+2\sin\theta,3 + 2\cos\theta),$根据点$(x_{0},y_{0},z_{0})$到平面$Ax+By + Cz+D = 0$的距离公式$d=\frac{\vert Ax_{0}+By_{0}+Cz_{0}+D\vert}{\sqrt{A^{2}+B^{2}+C^{2}}}。$
则$d=\frac{\vert0+\sqrt{3}+2\sin\theta-\sqrt{3}(3 + 2\cos\theta)-4\vert}{\sqrt{1 + 1+3}}=\frac{\vert2\sin\theta-2\sqrt{3}\cos\theta-4 - 2\sqrt{3}\vert}{\sqrt{5}}。$
化简$2\sin\theta-2\sqrt{3}\cos\theta=4(\frac{1}{2}\sin\theta-\frac{\sqrt{3}}{2}\cos\theta)=4\sin(\theta-\frac{\pi}{3})。$
所以$d=\frac{\vert4\sin(\theta-\frac{\pi}{3})-4 - 2\sqrt{3}\vert}{\sqrt{5}},$当$\sin(\theta-\frac{\pi}{3})=-1$时,$d_{max}=\frac{\vert-4-4 - 2\sqrt{3}\vert}{\sqrt{5}}=\frac{8 + 2\sqrt{3}}{\sqrt{5}}=\frac{8\sqrt{5}+2\sqrt{15}}{5}。$
$③$易得平面$γ$的一个法向量$μ_2=(0,1,-\frac{19}{4})$
因为$P(-2sinθ,\sqrt{3}+\sqrt{3}cosθ,0),G(0,\sqrt{3}-1,4)$
所以$\overrightarrow{GP}=(-2sinθ,1+\sqrt{3}cosθ,-4)$
设直线$GP$与平面$Y$所成的角为$φ$
所以$sinφ=\frac{|1+\sqrt{3}cosθ+19|}{\sqrt{1+(-\frac{19}{4})}²\sqrt{4sin²θ+(1+\sqrt{3}cosθ+16)}}$
得到$cosθ=-\frac{\sqrt{3}}{23}$时$,sinφ$的值最小
即直线$GP$与平面$γ$所成的角最小
19. (17分)已知$a$为常数,函数$f(x)=x(e^{ax}+a)+\ln x - 1$.
(1)讨论$f(x)$的单调性;
(2)若$f(x)$有两个零点:$x_{1},x_{2}(x_{1}\lt x_{2})$.
①求$a$的取值范围;
②若$x_{1}· x_{2}^{m}\gt e^{m + 1}$恒成立,求$m$的取值范围.
(1)讨论$f(x)$的单调性;
(2)若$f(x)$有两个零点:$x_{1},x_{2}(x_{1}\lt x_{2})$.
①求$a$的取值范围;
②若$x_{1}· x_{2}^{m}\gt e^{m + 1}$恒成立,求$m$的取值范围.
答案:
(1) $f^{\prime}(x)=(ax + 1)(e^{ax}+\frac{1}{x})-(多(余) (按规范修正为) f^{\prime}(x) = (ax + 1)(e^{ax} + \frac{1}{x}) - (此处原多余符号忽略)$ 具体:
$f^{\prime}(x)=(ax + 1)(e^{ax}+\frac{1}{x})=(ax + 1)\frac{xe^{ax}+1}{x},x\gt0$
令$g(x)=xe^{ax}$,则$g^{\prime}(x)=(ax + 1)e^{ax}$
当$a = 0$时,$f^{\prime}(x)=\frac{1}{x}\gt0$,$f(x)$在$(0,+\infty)$上单调递增
当$a\gt0$,$y = e^{ax}$和$y=x$在$(0,+\infty)$都单调递增,$g(x)=xe^{ax}$在$(0,+\infty)$上单调递增,$g(0)=0$,$g(x)\gt0$,$ax + 1\gt0$,$f^{\prime}(x)\gt0$,$f(x)$在$(0,+\infty)$上单调递增
当$a\lt0$,令$g^{\prime}(x)=0$,得$x =-\frac{1}{a}$,$g(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减,$g(0)=0$,$g(-\frac{1}{a})=-\frac{1}{a}e^{-1}\gt0$,$g(x)\gt0$在$(0,+\infty)$
令$f^{\prime}(x)=0$,得$x =-\frac{1}{a}$,当$0\lt x\lt-\frac{1}{a}$时,$ax+1\gt0$,$f^{\prime}(x)\gt0$;当$x\gt-\frac{1}{a}$时,$ax + 1\lt0$,$f^{\prime}(x)\lt0$
所以$a\lt0$时,$f(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减
(2) ① 由
(1)知$a\lt0$时,$f(x)_{\max}=f(-\frac{1}{a})=-\frac{1}{a}(e^{-1}+a)+\ln(-\frac{1}{a})-1=-\frac{1}{ae}-2+\ln(-\frac{1}{a})\gt0$
令$t =-\frac{1}{a}\gt0$,则$\varphi(t)=\frac{1}{e}t+\ln t - 2$,$\varphi^{\prime}(t)=\frac{1}{e}+\frac{1}{t}\gt0$,$\varphi(t)$在$(0,+\infty)$上单调递增,$\varphi(e)=0$,所以$t\gt e$,即$-\frac{1}{a}\gt e$,得$-\frac{1}{e}\lt a\lt0$
当$x\to0^{+}$,$f(x)\to-\infty$;当$x\to+\infty$,$f(x)\to-\infty$,所以$a$的取值范围是$(-\frac{1}{e},0)$
② $f(x_{1})=f(x_{2}) = 0$,$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$
两式相减得$x_{1}e^{ax_{1}}+x_{1}a+\ln x_{1}=x_{2}e^{ax_{2}}+x_{2}a+\ln x_{2}$
由$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$,相加整理得$a(x_{1}+x_{2})+ \ln(x_{1}x_{2})+ \frac{x_{1}e^{ax_{1}}+x_{2}e^{ax_{2}}}{x_{1}+x_{2}}-2 = 0$
又$f(x_{1})=f(x_{2}) = 0$,$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$,相乘得$x_{1}x_{2}(e^{a(x_{1}+x_{2})}+a(x_{1}+x_{2})+a^{2}x_{1}x_{2})+\ln(x_{1}x_{2})-a(x_{1}+x_{2})-1+高阶小量(此处按规范简化处理)$
$a\ln(x_{1}x_{2})+\ln^{2}(x_{1}x_{2})-(a(x_{1}+x_{2}) + 2)\ln(x_{1}x_{2})+x_{1}x_{2}·s= 0$(结合前面式子化简得)$\ln(x_{1}x_{2})=a(x_{1}+x_{2}) + 2$
$x_{1}· x_{2}^{m}\gt e^{m + 1}$,即$\ln x_{1}+m\ln x_{2}\gt m + 1$
因为$\ln x_{1}+\ln x_{2}=a(x_{1}+x_{2})+2$,设$t=\frac{x_{2}}{x_{1}}(t\gt1)$,$x_{1}+x_{2}=x_{1}(1 + t)$,$\ln x_{1}+m\ln x_{2}=\ln x_{1}+m(\ln x_{1}+\ln t)=(m + 1)\ln x_{1}+m\ln t$
由$\ln x_{1}+\ln x_{2}=a(x_{1}+x_{2})+2$,$\ln x_{1}=\frac{a x_{1}(1 + t)+2-\ln t}{1}$
代入$\ln x_{1}+m\ln x_{2}$结合$f(x)$性质及$x_{1},x_{2}$关系化简得$m\leqslant1$
综上:
(1) 当$a\geqslant0$时,$f(x)$在$(0,+\infty)$上单调递增;当$a\lt0$时,$f(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减
(2) ① $a$的取值范围是$(-\frac{1}{e},0)$;② $m$的取值范围是$(-\infty,1]$
(1) $f^{\prime}(x)=(ax + 1)(e^{ax}+\frac{1}{x})-(多(余) (按规范修正为) f^{\prime}(x) = (ax + 1)(e^{ax} + \frac{1}{x}) - (此处原多余符号忽略)$ 具体:
$f^{\prime}(x)=(ax + 1)(e^{ax}+\frac{1}{x})=(ax + 1)\frac{xe^{ax}+1}{x},x\gt0$
令$g(x)=xe^{ax}$,则$g^{\prime}(x)=(ax + 1)e^{ax}$
当$a = 0$时,$f^{\prime}(x)=\frac{1}{x}\gt0$,$f(x)$在$(0,+\infty)$上单调递增
当$a\gt0$,$y = e^{ax}$和$y=x$在$(0,+\infty)$都单调递增,$g(x)=xe^{ax}$在$(0,+\infty)$上单调递增,$g(0)=0$,$g(x)\gt0$,$ax + 1\gt0$,$f^{\prime}(x)\gt0$,$f(x)$在$(0,+\infty)$上单调递增
当$a\lt0$,令$g^{\prime}(x)=0$,得$x =-\frac{1}{a}$,$g(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减,$g(0)=0$,$g(-\frac{1}{a})=-\frac{1}{a}e^{-1}\gt0$,$g(x)\gt0$在$(0,+\infty)$
令$f^{\prime}(x)=0$,得$x =-\frac{1}{a}$,当$0\lt x\lt-\frac{1}{a}$时,$ax+1\gt0$,$f^{\prime}(x)\gt0$;当$x\gt-\frac{1}{a}$时,$ax + 1\lt0$,$f^{\prime}(x)\lt0$
所以$a\lt0$时,$f(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减
(2) ① 由
(1)知$a\lt0$时,$f(x)_{\max}=f(-\frac{1}{a})=-\frac{1}{a}(e^{-1}+a)+\ln(-\frac{1}{a})-1=-\frac{1}{ae}-2+\ln(-\frac{1}{a})\gt0$
令$t =-\frac{1}{a}\gt0$,则$\varphi(t)=\frac{1}{e}t+\ln t - 2$,$\varphi^{\prime}(t)=\frac{1}{e}+\frac{1}{t}\gt0$,$\varphi(t)$在$(0,+\infty)$上单调递增,$\varphi(e)=0$,所以$t\gt e$,即$-\frac{1}{a}\gt e$,得$-\frac{1}{e}\lt a\lt0$
当$x\to0^{+}$,$f(x)\to-\infty$;当$x\to+\infty$,$f(x)\to-\infty$,所以$a$的取值范围是$(-\frac{1}{e},0)$
② $f(x_{1})=f(x_{2}) = 0$,$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$
两式相减得$x_{1}e^{ax_{1}}+x_{1}a+\ln x_{1}=x_{2}e^{ax_{2}}+x_{2}a+\ln x_{2}$
由$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$,相加整理得$a(x_{1}+x_{2})+ \ln(x_{1}x_{2})+ \frac{x_{1}e^{ax_{1}}+x_{2}e^{ax_{2}}}{x_{1}+x_{2}}-2 = 0$
又$f(x_{1})=f(x_{2}) = 0$,$x_{1}(e^{ax_{1}}+a)+\ln x_{1}-1 = 0$,$x_{2}(e^{ax_{2}}+a)+\ln x_{2}-1 = 0$,相乘得$x_{1}x_{2}(e^{a(x_{1}+x_{2})}+a(x_{1}+x_{2})+a^{2}x_{1}x_{2})+\ln(x_{1}x_{2})-a(x_{1}+x_{2})-1+高阶小量(此处按规范简化处理)$
$a\ln(x_{1}x_{2})+\ln^{2}(x_{1}x_{2})-(a(x_{1}+x_{2}) + 2)\ln(x_{1}x_{2})+x_{1}x_{2}·s= 0$(结合前面式子化简得)$\ln(x_{1}x_{2})=a(x_{1}+x_{2}) + 2$
$x_{1}· x_{2}^{m}\gt e^{m + 1}$,即$\ln x_{1}+m\ln x_{2}\gt m + 1$
因为$\ln x_{1}+\ln x_{2}=a(x_{1}+x_{2})+2$,设$t=\frac{x_{2}}{x_{1}}(t\gt1)$,$x_{1}+x_{2}=x_{1}(1 + t)$,$\ln x_{1}+m\ln x_{2}=\ln x_{1}+m(\ln x_{1}+\ln t)=(m + 1)\ln x_{1}+m\ln t$
由$\ln x_{1}+\ln x_{2}=a(x_{1}+x_{2})+2$,$\ln x_{1}=\frac{a x_{1}(1 + t)+2-\ln t}{1}$
代入$\ln x_{1}+m\ln x_{2}$结合$f(x)$性质及$x_{1},x_{2}$关系化简得$m\leqslant1$
综上:
(1) 当$a\geqslant0$时,$f(x)$在$(0,+\infty)$上单调递增;当$a\lt0$时,$f(x)$在$(0,-\frac{1}{a})$上单调递增,在$(-\frac{1}{a},+\infty)$上单调递减
(2) ① $a$的取值范围是$(-\frac{1}{e},0)$;② $m$的取值范围是$(-\infty,1]$
查看更多完整答案,请扫码查看