2026年一本密卷高考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年一本密卷高考数学》

13. 已知 $ \alpha,\beta\in(0,\pi) $,且 $ \tan\alpha = 2 $,$ \sin(\alpha + \beta) = \frac{\sqrt{2}}{10} $,则 $ \beta - \alpha = $
$\frac{\pi}{4}$
.
答案: 13. $\frac{\pi}{4}$ 因为$\alpha, \beta\in(0, \pi)$,且$\tan\alpha = 2 > 1$,则$\alpha\in(\frac{\pi}{4}, \frac{\pi}{2})$,$2\alpha\in(\frac{\pi}{2}, \pi)$,
所以$\cos\alpha = \frac{\sqrt{5}}{5}$,$\sin\alpha = \frac{2\sqrt{5}}{5}$,$\sin 2\alpha = 2\sin\alpha\cos\alpha = \frac{4}{5}$,$\cos 2\alpha = 1 - 2\sin^2\alpha = -\frac{3}{5}$,
因为$\alpha\in(\frac{\pi}{4}, \frac{\pi}{2})$,$\beta\in(0, \pi)$,
则$\alpha + \beta\in(\frac{\pi}{4}, \frac{3\pi}{2})$,
又$\sin(\alpha + \beta) = \frac{\sqrt{2}}{10}\in(0, \frac{\sqrt{2}}{2})$,
则$\alpha + \beta\in(\frac{3\pi}{4}, \pi)$,
于是$\cos(\alpha + \beta) = -\frac{7\sqrt{2}}{10}$,
$\sin(\beta - \alpha) = \sin[(\alpha + \beta) - 2\alpha] = \sin(\alpha + \beta)\cos 2\alpha - \cos(\alpha + \beta)\sin 2\alpha = \frac{\sqrt{2}}{10}×(-\frac{3}{5}) - (-\frac{7\sqrt{2}}{10})×\frac{4}{5} = \frac{\sqrt{2}}{2}$,
又$\alpha + \beta\in(\frac{3\pi}{4}, \pi)$,$2\alpha\in(\frac{\pi}{2}, \pi)$,
所以$(\alpha + \beta - 2\alpha)\in(-\frac{\pi}{4}, \frac{\pi}{2})$,所以$\beta - \alpha = \frac{\pi}{4}$。
14. 设数列 $ \{a_{n}\} $ 满足 $ 3a_{1}+3^{2}a_{2}+3^{3}a_{3}+·s + 3^{n}a_{n} = n(n + 2) $,则数列 $ \{a_{n}\} $ 的通项公式为 $ a_{n} = $
$\frac{2n + 1}{3^n}$
.
答案: 14. $\frac{2n + 1}{3^n}$ 因为$3a_1 + 3^2a_2 + 3^3a_3 + ·s + 3^n a_n = n(n + 2)$,
所以$3a_1 + 3^2a_2 + 3^3a_3 + ·s + 3^{n - 1}a_{n - 1} = (n - 1)(n + 1)(n\geq 2, n\in N^*)$,
以上两式相减,得$3^n a_n = 2n + 1$,
所以$a_n = \frac{2n + 1}{3^n}(n\geq 2, n\in N^*)$。
当$n = 1$时,$3a_1 = 3$,得$a_1 = 1$,满足$a_n = \frac{2n + 1}{3^n}$,
所以$\{a_n\}$的通项公式为$a_n = \frac{2n + 1}{3^n}$。
15. 已知数列 $ \{a_{n}\} $ 满足 $ a_{1}^{2}+(2a_{n + 1}-a_{n})^{2} = 16(a_{1}-4) $.用符号“$ \prod $”表示一系列数的连乘,例如:$ \prod_{i = 1}^{3}a_{i} = a_{1}· a_{2}· a_{3} $.若 $ \prod_{i = 1}^{n}a_{i} > \frac{1}{512} $,则 $ n $ 的最大值为
8
.
答案: 15. 8 因为$a_1^2 + (2a_{n + 1} - a_n)^2 = 16(a_1 - 4)$,所以$(a_1 - 8)^2 + (2a_{n + 1} - a_n)^2 = 0$,
所以$a_1 = 8$且$2a_{n + 1} = a_n$,所以$\{a_n\}$是以8为首项,$\frac{1}{2}$为公比的等比数列,
故$a_n = 8(\frac{1}{2})^{n - 1} = (\frac{1}{2})^{n - 4}$。
由题可知
$\prod_{i = 1}^n a_i = a_1× a_2× a_3×·s× a_n = (\frac{1}{2})^{-3}×(\frac{1}{2})^{-2}×·s×(\frac{1}{2})^{n - 4}$
$ = (\frac{1}{2})^{(-3) + (-2) + ·s + (n - 4)}$
$ = (\frac{1}{2})^{\frac{n(-3 + n - 4)}{2}} = (\frac{1}{2})^{\frac{n(n - 7)}{2}}$,
$\prod_{i = 1}^n a_i > \frac{1}{512}$,
即$(\frac{1}{2})^{\frac{n(n - 7)}{2}} > \frac{1}{512} = (\frac{1}{2})^9$,
所以$\frac{n(n - 7)}{2} < 9$,所以$(n + 2)(n - 9) < 0$,
又$n\in N^*$,解得$n\leq 8$,所以$n$的最大值为8。
16. 已知数列 $ \{a_{n}\} $ 满足 $ a_{n + 1} = \begin{cases}2a_{n},n = 2k - 1,\\a_{n} + 1,n = 2k\end{cases}(k\in\mathbf{N}^{*}) $,且 $ a_{2} $ 是 $ a_{1} $,$ a_{3} $ 的等差中项,则数列 $ \{a_{n}\} $ 的前 2025 项的和 $ S_{2025} = $
$2^{1015} - 3043$
.
答案: 16. $2^{1015} - 3043$ 因为$a_{n + 1} = \begin{cases}2a_n, n = 2k - 1, \\a_n + 1, n = 2k\end{cases}(k\in N^*)$,
所以$a_2 = 2a_1$,
所以$a_3 = a_2 + 1 = 2a_1 + 1$,
因为$a_2$是$a_1$,$a_3$的等差中项,
所以$2a_2 = a_1 + a_3$,所以$4a_1 = a_1 + 2a_1 + 1$,解得$a_1 = 1$。
①当$n = 2k - 1$,$k\in N^*$时,$n + 1$为偶数,$n + 2$为奇数,
所以$a_{n + 1} = 2a_n$,$a_{n + 2} = a_{n + 1} + 1 = 2a_n + 1$,
所以$a_{n + 2} + 1 = 2(a_n + 1)$,
因为$a_n + 1 \neq 0$,所以$\frac{a_{n + 2} + 1}{a_n + 1} = 2$,
所以数列$\{a_n + 1\}(n = 2k - 1, k\in N^*)$是首项为$a_1 + 1 = 2$,公比为2的等比数列,
所以$a_n + 1 = 2× 2^{\frac{n + 1}{2} - 1} = 2^{\frac{n + 1}{2}}(n = 2k - 1, k\in N^*)$,
所以$a_n = 2^{\frac{n + 1}{2}} - 1(n = 2k - 1, k\in N^*)$。
②当$n = 2k$,$k\in N^*$时,
$a_n = 2a_{n - 1} = 2(2^{\frac{n - 1 + 1}{2}} - 1) = 2^{\frac{n + 2}{2}} - 2$。
则$\{a_n\}$的前2025项的和$S_{2025} = a_1 + a_2 + ·s + a_{2025} = (a_1 + a_3 + ·s + a_{2025}) + (a_2 + a_4 + ·s + a_{2024}) = (2^1 - 1 + 2^2 - 1 + ·s + 2^{1013} - 1) + (2^2 - 2 + 2^3 - 2 + ·s + 2^{1013} - 2) = \frac{2(1 - 2^{1013})}{1 - 2} - 1013 + \frac{2^2(1 - 2^{1012})}{1 - 2} - 2024 = 2^{1015} - 3043$。

查看更多完整答案,请扫码查看

关闭