2026年一本密卷高考数学


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年一本密卷高考数学》

7. 若圆$x^2 + (y + 2)^2 = r^2(r > 0)$上到直线$y = \sqrt{3}x + 2$的距离为1的点有且仅有2个,则$r$的取值范围是(
B
)

A.$(0,1)$
B.$(1,3)$
C.$(3, +\infty)$
D.$(0, +\infty)$
答案:
7.B 由题意,在圆$x^{2} + (y + 2)^{2} = r^{2}(r > 0)$中,圆心$E(0, - 2)$,半径为$r$,到直线$y = \sqrt{3}x + 2$的距离为$1$的点有且仅有$2$个,$\because$圆心$E(0, - 2)$到直线$y = \sqrt{3}x + 2$的距离为:$d = \frac{|0 × \sqrt{3} - ( - 2) × 1 + 2|}{\sqrt{(\sqrt{3})^{2} + ( - 1)^{2}}} = 2$,
参考答案

故由图可知,当$r = 1$时,圆$x^{2} + (y + 2)^{2} = r^{2}(r > 0)$上有且仅有一个点($A$点)到直线$y = \sqrt{3}x + 2$的距离等于$1$;当$r = 3$时,圆$x^{2} + (y + 2)^{2} = r^{2}(r > 0)$上有且仅有三个点($B,C,D$点)到直线$y = \sqrt{3}x + 2$的距离等于$1$;当$r$的取值范围为$(1,3)$时,圆$x^{2} + (y + 2)^{2} = r^{2}(r > 0)$上有且仅有两个点到直线$y = \sqrt{3}x + 2$的距离等于$1$.故选B.
8. 若实数$x,y,z$满足$2 + \log_2 x = 3 + \log_3 y = 5 + \log_5 z$,则$x,y,z$的大小关系不可能是(
B
)

A.$x > y > z$
B.$x > z > y$
C.$y > x > z$
D.$y > z > x$
答案:
8.B 方法一:设$2 + \log_{2}x = 3 + \log_{3}y = 5 + \log_{5}z = m$,所以令$m = 2$,则$x = 1,y = 3^{- 1} = \frac{1}{3}$,$z = 5^{- 3} = \frac{1}{125}$,此时$x > y > z$,$A$有可能;令$m = 5$,则$x = 8,y = 9,z = 1$,此时$y > x > z$,$C$有可能;令$m = 8$,则$x = 2^{6} = 64,y = 3^{5} = 243,z = 5^{3} = 125$,此时$y > z > x$,$D$有可能;故选B.
方法二:设$2 + \log_{2}x = 3 + \log_{3}y = 5 + \log_{5}z = m$,所以,$x = 2^{m - 2},y = 3^{m - 3},z = 5^{m - 5}$,根据指数函数的单调性,易知各方程只有唯一的根,作出函数$y = 2^{x - 2},y = 3^{x - 3},y = 5^{x - 5}$的图象,以上方程的根分别是函数$y = 2^{x - 2},y = 3^{x - 3},y = 5^{x - 5}$的图象与直线$x = m$的交点纵坐标,如图所示:y33xm
易知,随着$m$的变化可能出现:$x > y > z,y > x > z$,$y > z > x,z > y > x$,故选B.
9. 在正三棱柱$ABC - A_1B_1C_1$中,$D$为$BC$中点,则(
BD
)

A.$AD\perp A_1C$
B.$BC\perp$平面$AA_1D$
C.$AD// A_1B_1$
D.$CC_1//$平面$AA_1D$
答案:
9.BD 方法一:对于$A$,在正三棱柱$ABC - A_{1}B_{1}C_{1}$中,$AA_{1} \perp$平面$ABC$,

又$AD \subset$平面$ABC$,则$AA_{1} \perp AD$,则$\overrightarrow{A_{1}A} · \overrightarrow{AD} = 0$,因为$\triangle ABC$是正三角形,$D$为$BC$中点,则$AD \perp BC$,则$\overrightarrow{CD} · \overrightarrow{AD} = 0$,又$\overrightarrow{A_{1}C} = \overrightarrow{A_{1}A} + \overrightarrow{AD} + \overrightarrow{DC}$,所以$\overrightarrow{A_{1}C} · \overrightarrow{AD} = (\overrightarrow{A_{1}A} + \overrightarrow{AD} + \overrightarrow{DC}) · \overrightarrow{AD} = \overrightarrow{A_{1}A} · \overrightarrow{AD} + {\overrightarrow{AD}}^{2} + \overrightarrow{DC} · \overrightarrow{AD} = {\overrightarrow{AD}}^{2} \neq 0$,则$AD \perp A_{1}C$不成立,故$A$错误;对于$B$,因为在正三棱柱$ABC - A_{1}B_{1}C_{1}$中,$AA_{1} \perp$平面$ABC$,又$BC \subset$平面$ABC$,则$AA_{1} \perp BC$,因为$\triangle ABC$是正三角形,$D$为$BC$中点,则$AD \perp BC$,又$AA_{1} \cap AD = A,AA_{1},AD \subset$平面$AA_{1}D$,所以$BC \perp$平面$AA_{1}D$,故$B$正确;对于$D$,因为在正三棱柱$ABC - A_{1}B_{1}C_{1}$中,$CC_{1}//AA_{1}$,又$AA_{1} \subset$平面$AA_{1}D,CC_{1} \subset$平面$AA_{1}D$,所以$CC_{1}//$平面$AA_{1}D$,故$D$正确;对于$C$,因为在正三棱柱$ABC - A_{1}B_{1}C_{1}$中,$A_{1}B_{1}//AB$,假设$AD//A_{1}B_{1}$,则$AD//AB$,这与$AD \cap AB = A$矛盾,所以$AD//A_{1}B_{1}$不成立,故$C$错误.故选BD.
方法二:如图,建立空间直角坐标系,设该正三棱柱的底边为$2$,高为$h$,
xA
则$D(0,0,0),A(\sqrt{3},0,0),A_{1}(\sqrt{3},0,h),C(0, - 1,0),C_{1}(0, - 1,h),B(0,1,0),B_{1}(0,1,h)$,对于$A$,$\overrightarrow{AD} = ( - \sqrt{3},0,0),\overrightarrow{A_{1}C} = ( - \sqrt{3}, - 1,- h)$,则$\overrightarrow{AD} · \overrightarrow{A_{1}C} = ( - \sqrt{3}) × ( - \sqrt{3}) + 0 = 3 \neq 0$,则$AD \perp A_{1}C$不成立,故$A$错误;对于$B,C$,$\overrightarrow{BC} = (0, - 2,0),\overrightarrow{CC_{1}} = (0,0,h)$,$\overrightarrow{AA_{1}} = (0,0,h),\overrightarrow{AD} = ( - \sqrt{3},0,0)$,设平面$AA_{1}D$的法向量为$\overrightarrow{n} = (x,y,z)$,则$\begin{cases} \overrightarrow{AA_{1}} · \overrightarrow{n} = hz = 0 \\ \overrightarrow{AD} · \overrightarrow{n} = - \sqrt{3}x = 0 \end{cases}$,得$x = z = 0$,令$y = 1$,则$\overrightarrow{n} = (0,1,0)$,所以$\overrightarrow{BC} = (0, - 2,0) = - 2\overrightarrow{n},\overrightarrow{CC_{1}} · \overrightarrow{n} = 0$,则$BC \perp$平面$AA_{1}D,CC_{1}//$平面$AA_{1}D$,故$BD$正确;对于$D$,$\overrightarrow{AD} = ( - \sqrt{3},0,0)$,$\overrightarrow{A_{1}B_{1}} = ( - \sqrt{3},1,0)$,则$\frac{- \sqrt{3}}{- \sqrt{3}} \neq \frac{0}{1}$,显然$AD//A_{1}B_{1}$不成立,故$C$错误.故选BD.
10. 设抛物线$C:y^2 = 6x$的焦点为$F$,过$F$的直线交$C$于$A,B$两点,过点$A$作准线$l:x = -\frac{3}{2}$的垂线,垂足为$D$,过$F$且与直线$AB$垂直的直线交$l$于点$E$,则(
ACD
)

A.$|AD| = |AF|$
B.$|AE| = |AB|$
C.$|AB|\geq 6$
D.$|AE|·|BE|\geq 18$
答案:
10.ACD 方法一:对于$A$,对于抛物线$C:y^{2} = 6x$,则$p = 3$,其准线方程为$x = - \frac{3}{2}$,焦点$F(\frac{3}{2},0)$,则$|AD|$为抛物线上点到准线的距离,$|AF|$为抛物线上点到焦点的距离,

由抛物线的定义可知,$|AD| = |AF|$,故$A$正确;对于$B$,过点$B$作准线$l$的垂线,交于点$P$,由题意可知$AD \perp l,EF \perp AB$,则$\angle ADE = \angle AFE = 90^{\circ}$,又$|AD| = |AF|,|AE| = |AE|$,所以$\triangle ADE \cong \triangle AFE$,所以$\angle AED = \angle AEF$,同理$\angle BEP = \angle BEF$,又$\angle AED + \angle AEF + \angle BEP + \angle BEF = 180^{\circ}$,所以$\angle AEF + \angle BEF = 90^{\circ}$,即$\angle AEB = 90^{\circ}$,显然$AB$为$\triangle ABE$的斜边,则$|AE| < |AB|$,故$B$错误;对于$C$,易知直线$AB$的斜率不为$0$,设直线$AB$的方程为$x = my + \frac{3}{2}$,$A(x_{1},y_{1}),B(x_{2},y_{2})$,联立$\begin{cases} x = my + \frac{3}{2} \\y^{2} = 6x \end{cases}$得$y^{2} - 6my - 9 = 0$,易知$\Delta > 0$,则$y_{1} + y_{2} = 6m,y_{1}y_{2} = - 9$,又$x_{1} = my_{1} + \frac{3}{2},x_{2} = my_{2} + \frac{3}{2}$,所以$|AB| = x_{1} + x_{2} + p = m(y_{1} + y_{2}) + 3 + 3 = 6m^{2} + 6 \geqslant 6$,当且仅当$m = 0$时取等号,故$C$正确;对于$D$,在$Rt \triangle ABE$与$Rt \triangle AEF$中,$\angle BAE = \angle EAF$,所以$Rt \triangle ABE \backsim Rt \triangle AEF$,则$\frac{|AE|}{|AB|} = \frac{|AF|}{|AE|}$,即$|AE|^{2} = |AF| · |AB|$,同理$|BE|^{2} = |BF| · |AB|$,又$|AF| · |BF| = (x_{1} + \frac{3}{2})(x_{2} + \frac{3}{2}) = (my_{1} + 3)(my_{2} + 3) = m^{2}y_{1}y_{2} + 3m(y_{1} + y_{2}) + 9 = - 9m^{2} + 18m^{2} + 9 = 9(m^{2} + 1)$,$|AB| = 6m^{2} + 6 = 6(m^{2} + 1)$,所以$|AE|^{2} · |BE|^{2} = |BF| · |AF| · |AB|^{2} = 9(m^{2} + 1) × 36(m^{2} + 1)^{2}$,则$|AE| · |BE| = 3(m^{2} + 1)^{\frac{3}{2}} × 6(m^{2} + 1)^{\frac{1}{2}} = 18(m^{2} + 1)^{2} \geqslant 18$,故$D$正确.故选ACD.
方法二:对于$A$,对于抛物线$C:y^{2} = 6x$,则$p = 3$,其准线方程为$x = - \frac{3}{2}$,焦点$F(\frac{3}{2},0)$,则$|AD|$为抛物线上点到准线的距离,$|AF|$为抛物线上点到焦点的距离,

由抛物线的定义可知,$|AD| = |AF|$,故$A$正确;对于$B$,过点$B$作准线$l$的垂线,交于点$P$,由题意可知$AD \perp l,EF \perp AB$,则$\angle ADE = \angle AFE = 90^{\circ}$,又$|AD| = |AF|,|AE| = |AE|$,所以$\triangle ADE \cong \triangle AFE$,所以$\angle AED = \angle AEF$,同理$\angle BEP = \angle BEF$,又$\angle AED + \angle AEF + \angle BEP + \angle BEF = 180^{\circ}$,所以$\angle AEF + \angle BEF = 90^{\circ}$,即$\angle AEB = 90^{\circ}$,显然$AB$为$\triangle ABE$的斜边,则$|AE| < |AB|$,故$B$错误;对于$C$,当直线$AB$的斜率不存在时,$|AB| = 2p = 6$;当直线$AB$的斜率存在时,设直线$AB$的方程为$y = k(x - \frac{3}{2})$,联立$\begin{cases} y = k(x - \frac{3}{2}) \\y^{2} = 6x \end{cases}$,消去$y$,得$k^{2}x^{2} - (3k^{2} + 6)x + \frac{9}{4}k^{2} = 0$,易知$\Delta > 0$,则$x_{1} + x_{2} = 3 + \frac{6}{k^{2}},x_{1}x_{2} = \frac{9}{4}$,所以$|AB| = \sqrt{1 + k^{2}}|x_{1} - x_{2}| = \sqrt{1 + k^{2}} × \sqrt{(x_{1} + x_{2})^{2} - 4x_{1}x_{2}} = \sqrt{1 + k^{2}} × \sqrt{(3 + \frac{6}{k^{2}})^{2} - 9} = 6(1 + \frac{1}{k^{2}}) > 6$,综上,$|AB| \geqslant 6$,故$C$正确;对于$D$,在$Rt \triangle ABE$与$Rt \triangle AEF$中,$\angle BAE = \angle EAF$,所以$Rt \triangle ABE \backsim Rt \triangle AEF$,则$\frac{|AE|}{|AB|} = \frac{|AF|}{|AE|}$,即$|AE|^{2} = |AF| · |AB|$,同理$|BE|^{2} = |BF| · |AB|$,当直线$AB$的斜率不存在时,$|AB| = 6,|AF| = |BF| = \frac{1}{2}|AB| = 3$,所以$|AE|^{2} · |BE|^{2} = |BF| · |AF| · |AB|^{2} = 3 × 3 × 6^{2}$,即$|AE| · |BE| = 18$;当直线$AB$的斜率存在时,$|AB| = 6(1 + \frac{1}{k^{2}})$,$|AF| · |BF| = (x_{1} + \frac{3}{2})(x_{2} + \frac{3}{2}) = x_{1}x_{2} + \frac{3}{2}(x_{1} + x_{2}) + \frac{9}{4} = \frac{9}{4} + \frac{3}{2}(3 + \frac{6}{k^{2}}) + \frac{9}{4} = 9(1 + \frac{1}{k^{2}})$,所以$|AE|^{2} · |BE|^{2} = |BF| · |AF| · |AB|^{2} = 9(1 + \frac{1}{k^{2}}) × 36(1 + \frac{1}{k^{2}})^{2}$,$|AE| · |BE| = 3(1 + \frac{1}{k^{2}})^{\frac{3}{2}} × 6(1 + \frac{1}{k^{2}})^{\frac{1}{2}} = 18(1 + \frac{1}{k^{2}})^{2} > 18$;综上,$|AE| · |BE| \geqslant 18$,故$D$正确.故选ACD.
11. 已知$\triangle ABC$的面积为$\frac{1}{4}$,若$\cos 2A + \cos 2B + 2\sin C = 2$,$\cos A\cos B\sin C = \frac{1}{4}$,则(
ABC
)

A.$\sin C = \sin^2 A + \sin^2 B$
B.$AB = \sqrt{2}$
C.$\sin A + \sin B = \frac{\sqrt{6}}{2}$
D.$AC^2 + BC^2 = 3$
答案:
11.ABC $\cos 2A + \cos 2B + 2\sin C = 2$,由二倍角公式,$1 - 2\sin^{2}A + 1 - 2\sin^{2}B + 2\sin C = 2$,整理可得,$\sin C = \sin^{2}A + \sin^{2}B$,$A$选项正确;由诱导公式,$\sin(\pi - C) = \sin C$,即$\sin A\cos B + \sin B\cos A = \sin^{2}A + \sin^{2}B$,即$\sin A(\sin A - \cos B) + \sin B(\sin B - \cos A) = 0$,下证$C = \frac{\pi}{2}$.
方法一:分类讨论
若$A + B = \frac{\pi}{2}$,则$\sin A = \cos B,\sin B = \cos A$可知等式成立;若$A + B < \frac{\pi}{2}$,即$A < \frac{\pi}{2} - B$,由诱导公式和正弦函数的单调性可知,$\sin A < \cos B$,同理$\sin B < \cos A$,又$\sin A > 0,\sin B > 0$,于是$\sin A(\sin A - \cos B) + \sin B(\sin B - \cos A) < 0$,与条件不符,则$A + B < \frac{\pi}{2}$不成立;若$A + B > \frac{\pi}{2}$,类似可推导出$\sin A(\sin A - \cos B) + \sin B(\sin B - \cos A) > 0$,则$A + B > \frac{\pi}{2}$不成立.
综上讨论可知,$A + B = \frac{\pi}{2}$,即$C = \frac{\pi}{2}$.
方法二:边角转化
$\sin C = \sin^{2}A + \sin^{2}B$时,由$C \in (0,\pi)$,则$\sin C \in (0,1\rbrack$,于是$1 × \sin C = \sin^{2}A + \sin^{2}B \geqslant \sin^{2}C$,由正弦定理可知,$a^{2} + b^{2} \geqslant c^{2}$,由余弦定理可知,$\cos C \geqslant 0$,则$C \in (0,\frac{\pi}{2}\rbrack$,若$C \in (0,\frac{\pi}{2})$,则$A + B > \frac{\pi}{2}$,注意到$\cos A\cos B\sin C = \frac{1}{4}$,则$\cos A\cos B > 0$,于是$\cos A > 0,\cos B > 0$(两者同负会有两个钝角,不成立),于是$A,B \in (0,\frac{\pi}{2})$,结合$A + B > \frac{\pi}{2}\Leftrightarrow A > \frac{\pi}{2} - B$,而$A,\frac{\pi}{2} - B$都是锐角,则$\sin A > \sin(\frac{\pi}{2} - B) = \cos B > 0$,于是$\sin C = \sin^{2}A + \sin^{2}B > \cos^{2}B + \sin^{2}B = 1$,这和$\sin C \leqslant 1$相矛盾,故$C \in (0,\frac{\pi}{2})$不成立,则$C = \frac{\pi}{2}$,由$\cos A\cos B\sin C = \frac{1}{4} = \cos A\cos B$,由$A + B = \frac{\pi}{2}$,则$\cos B = \sin A$,即$\sin A\cos A = \frac{1}{4}$,则$\sin 2A = \frac{1}{2}$,同理$\sin 2B = \frac{1}{2}$,由上述推导,$A,B \in (0,\frac{\pi}{2})$,则$2A,2B \in (0,\pi)$,不妨设$A < B$,则$2A = \frac{\pi}{6},2B = \frac{5\pi}{6}$,即$A = \frac{\pi}{12},B = \frac{5\pi}{12}$,
由两角和差的正弦公式可知$\sin\frac{\pi}{12} + \sin\frac{5\pi}{12} = \frac{\sqrt{6} - \sqrt{2}}{4} + \frac{\sqrt{6} + \sqrt{2}}{4} = \frac{\sqrt{6}}{2}$,$C$选项正确;由两角和的正切公式可得,$\tan\frac{5\pi}{12} = 2 + \sqrt{3}$,设$BC = t,AC = (2 + \sqrt{3})t$,则$AB = (\sqrt{2} + \sqrt{6})t$,由$S_{\triangle ABC} = \frac{1}{2}(2 + \sqrt{3})t^{2} = \frac{1}{4}$,则$t^{2} = \frac{4 - 2\sqrt{3}}{4} = (\frac{\sqrt{3} - 1}{2})^{2}$,则$t = \frac{\sqrt{3} - 1}{2}$,于是$AB = (\sqrt{6} + \sqrt{2})t = \sqrt{2}$,$B$选项正确,由勾股定理可知,$AC^{2} + BC^{2} = 2$,$D$选项错误.故选$ABC$.
sqrt62
12. 若直线$y = 2x + 5$是曲线$y = e^x + x + a$的切线,则$a = $
4
.
答案: 12.4 方法一:对于$y = e^{x} + x + a$,其导数为$y^{\prime} = e^{x} + 1$,因为直线$y = 2x + 5$是曲线的切线,直线的斜率为$2$,令$y^{\prime} = e^{x} + 1 = 2$,即$e^{x} = 1$,解得$x = 0$,将$x = 0$代入切线方程$y = 2x + 5$,可得$y = 2 × 0 + 5 = 5$,所以切点坐标为$(0,5)$,因为切点$(0,5)$在曲线$y = e^{x} + x + a$上,所以$5 = e^{0} + 0 + a$,即$5 = 1 + a$,解得$a = 4$.
方法二:对于$y = e^{x} + x + a$,其导数为$y^{\prime} = e^{x} + 1$,假设$y = 2x + 5$与$y = e^{x} + x + a$的切点为$(x_{0},y_{0})$,则$\begin{cases} e^{x_{0}} + 1 = 2 \\y_{0} = 2x_{0} + 5 \\y_{0} = e^{x_{0}} + x_{0} + a \end{cases}$,解得$a = 4$.
13. 若一个等比数列的各项均为正数,且前4项和为4,前8项和为68,则该等比数列的公比为
2
.
答案: 13.2 方法一:设该等比数列为$\{ a_{n}\},S_{n}$是其前$n$项和,则$S_{4} = 4,S_{8} = 68$,设$\{ a_{n}\}$的公比为$q(q > 0)$,当$q = 1$时,$S_{4} = 4a_{1} = 4$,即$a_{1} = 1$,则$S_{8} = 8a_{1} = 8 \neq 68$,显然不成立,舍去;当$q \neq 1$时,则$S_{4} = \frac{a_{1}(1 - q^{4})}{1 - q} = 4$,$S_{8} = \frac{a_{1}(1 - q^{8})}{1 - q} = 68$,两式相除得$\frac{1 - q^{8}}{1 - q^{4}} = \frac{68}{4}$,即$\frac{(1 - q^{4})(1 + q^{4})}{1 - q^{4}} = 17$,则$1 + q^{4} = 17$,所以$q = 2$,所以该等比数列公比为$2$.
方法二:设该等比数列为$\{ a_{n}\},S_{n}$是其前$n$项和,则$S_{4} = 4,S_{8} = 68$,设$\{ a_{n}\}$的公比为$q(q > 0)$,所以$S_{4} = a_{1} + a_{2} + a_{3} + a_{4} = 4$,$S_{8} = a_{1} + a_{2} + a_{3} + a_{4} + a_{5} + a_{6} + a_{7} + a_{8} = a_{1} + a_{2} + a_{3} + a_{4} + a_{1}q^{4} + a_{2}q^{4} + a_{3}q^{4} + a_{4}q^{4} = (a_{1} + a_{2} + a_{3} + a_{4})(1 + q^{4}) = 68$,所以$4(1 + q^{4}) = 68$,则$1 + q^{4} = 17$,所以$q = 2$,所以该等比数列公比为$2$.
方法三:设该等比数列为$\{ a_{n}\},S_{n}$是其前$n$项和,则$S_{4} = 4,S_{8} = 68$,设$\{ a_{n}\}$的公比为$q(q > 0)$,因为$S_{8} - S_{4} = a_{5} + a_{6} + a_{7} + a_{8} = (a_{1} + a_{2} + a_{3} + a_{4})q^{4} = 68 - 4 = 64$,又$S_{4} = a_{1} + a_{2} + a_{3} + a_{4} = 4$,所以$\frac{S_{8} - S_{4}}{S_{4}} = q^{4} = \frac{64}{4} = 16$,所以$q = 2$,所以该等比数列公比为$2$.
14. 一个箱子里有5个相同的球,分别以1~5标号,若每次取一颗,有放回地取三次,记至少取出一次的球的个数$X$,则数学期望$E(X) = $
$\frac{61}{25}$
.
答案: 14.$\frac{61}{25}$ 方法一:依题意,$X$的可能取值为$1、2、3$,总的可能取值为$5^{3} = 125$,其中$X = 1$:三次抽取同一球,选择球的编号有$5$种方式,故$P(X = 1) = \frac{5}{125} = \frac{1}{25}$,$X = 2$:恰好两种不同球被取出(即一球出现两次,另一球出现一次),选取出现两次的球有$5$种方式,选取出现一次的球有$4$种方式,其中选取出现一次球的位置有$3$种可能,故事件$X = 2$的可能情况有$5 × 4 × 3 = 60$(种),故$P(X = 2) = \frac{60}{125} = \frac{12}{25}$,$X = 3$:三种不同球被取出,由排列数可知事件$X = 3$的可能情况有$5 × 4 × 3 = 60$(种),故$P(X = 3) = \frac{60}{125} = \frac{12}{25}$,所以$E(X) = 1 × P(X = 1) + 2 × P(X = 2) + 3 × P(X = 3) = 1 × \frac{5}{125} + 2 × \frac{12}{25} + 3 × \frac{12}{25} = \frac{61}{25}$.
方法二:依题意,假设随机变量$X_{i}$,其中$i = 1,2,3,4,5$;其中$X_{i} = \begin{cases} 1,这3次选取中,球i至少被取出一次 \\ 0,这3次选取中,球i一次都没被取出 \end{cases}$,则$X = \sum_{i = 1}^{5}X_{i}$,由于球的对称性,易知所有$E(X_{i})$相等,则由期望的线性性质,得$E(X) = E(\sum_{i = 1}^{5}X_{i}) = \sum_{i = 1}^{5}E(X_{i}) = 5E(X_{i})$,由题意可知,球$i$在单次抽取中未被取出的概率为$\frac{4}{5}$,由于抽取独立,三次均未取出球$i$的概率为$P(X_{i} = 0) = (\frac{4}{5})^{3} = \frac{64}{125}$,因此球$i$至少被取出一次的概率为:$P(X_{i} = 1) = 1 - \frac{64}{125} = \frac{61}{125}$,故$E(X_{i}) = \frac{61}{125}$,所以$E(X) = 5E(X_{i}) = 5 × \frac{61}{125} = \frac{61}{25}$.
15.(13分)为研究某疾病与超声波检查结果的关系,从做过超声波检查的人群中随机调查了1000人,得到如下列联表:

(1)记超声波检查结果不正常者患该疾病的概率为$P$,求$P$的估计值;
(2)根据小概率值$\alpha = 0.001$的独立性检验,分析超声波检查结果是否与患该疾病有关。
附$\chi^{2}=\frac{n(ad - bc)^{2}}{(a + b)(c + d)(a + c)(b + d)}$,

答案: (1)根据表格可知,检查结果不正常的200人中有180人患病,所以P的估计值为$\frac{180}{200}=\frac{9}{10}$。
(2)零假设为$H_0$:超声波检查结果与患病无关,根据表中数据可得,
$\chi^2=\frac{1000×(20×20 - 780×180)^2}{800×200×800×200}=765.625>10.828=x_{0.001}$,
根据小概率值$\alpha = 0.001$的$\chi^2$独立性检验,我们推断$H_0$不成立,即认为超声波检查结果与患该病有关,该推断犯错误的概率不超过0.001。

查看更多完整答案,请扫码查看

关闭