2026年一本密卷高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
9. (2025·河北省张家口三模)已知等比数列$\{ a_{n}\}$的前 $ n $ 项和为 $ S_{n}$,若 $ 5S_{2}-4S_{4}=0$,$a_{5}-a_{7} \neq 0$,则 $\frac{a_{9}+a_{11}}{a_{5}-a_{7}}=$
$\frac{5}{48}$
.
答案:
9.$\frac{5}{48}$由$5S_{2} - 4S_{4} = 0$可得$5(a_{1} + a_{2}) = 4(a_{1} + a_{2} + a_{3} + a_{4}) = 4(a_{1} + a_{2}) + 4q^{2}(a_{1} + a_{2})$,若$a_{1} + a_{2} = 0 \Rightarrow q = - 1$,则与$a_{5} - a_{7} \neq 0$矛盾,所以$q^{2} = \frac{1}{4}$,则$\frac{a_{9} + a_{11}}{a_{5} - a_{7}} = \frac{a_{5}(q^{4} + q^{6})}{a_{5}(1 - q^{2})} = \frac{\frac{1}{16} + \frac{1}{64}}{1 - \frac{1}{4}} = \frac{5}{48}$.
10. (2025·山东日照二模)设数列$\{ a_{n}\}$满足 $ a_{n + 1}=2a_{n}^{2}-1(n \in \mathbf{N}^{*})$. 若存在常数 $ \lambda $,使得 $ a_{n} \leq \lambda $ 成立,则 $ \lambda $ 的最小值是
$-\frac{1}{2}$
.
答案:
10.$-\frac{1}{2}$由题意:$\lambda \geqslant (a_{n})_{\max}$即可,$a_{n + 1} - a_{n} = 2a_{n}^{2} - a_{n} - 1 = (2a_{n} + 1)(a_{n} - 1)$;若$a_{n} < - \frac{1}{2}$,则$a_{n + 1} > a_{n}$且$a_{n + 1} + \frac{1}{2} = 2a_{n}^{2} - \frac{1}{2} > 0$,故$a_{n + 1} > - \frac{1}{2}$,则必有$\lambda > - \frac{1}{2}$;若$a_{n} = - \frac{1}{2}$,则$a_{n + 1} = a_{n}$,该数列为常数列,即$a_{n} = - \frac{1}{2}$,此时$\lambda \geqslant - \frac{1}{2}$;若$a_{n} > - \frac{1}{2}$,则显然有$\lambda > - \frac{1}{2}$;综上所述:$\lambda$的最小值为$- \frac{1}{2}$.
11. (13 分)(2025·四川省成都市三模)已知正项数列$\{ a_{n}\}$的前 $ n $ 项的和为 $ S_{n}$,且 $ a_{n}(2S_{n}-a_{n})=1$.
(1) 求 $ S_{1}$,$S_{2}$;
(2) 证明:$\{ S_{n}^{2}\}$是等差数列;
(3) 求数列$\left\{\frac{1}{S_{n}+S_{n + 1}}\right\}$的前 $ n $ 项的和 $ T_{n}$.
(1) 求 $ S_{1}$,$S_{2}$;
(2) 证明:$\{ S_{n}^{2}\}$是等差数列;
(3) 求数列$\left\{\frac{1}{S_{n}+S_{n + 1}}\right\}$的前 $ n $ 项的和 $ T_{n}$.
答案:
11.解:
(1)由$a_{n}(2S_{n} - a_{n}) = 1$,令$n = 1$,有$a_{1}^{2} = 1$,因为$a_{n} > 0$,所以$a_{1} = 1$.令$n = 2$,有$a_{2}(a_{2} + 2a_{1}) = 1$,即$a_{2}^{2} + 2a_{2} = 1$,由$a_{2} > 0$,解得$a_{2} = \sqrt{2} - 1$.所以$S_{1} = 1$,$S_{2} = \sqrt{2}$.
(2)证明:当$n \geqslant 2$时,由$a_{n} = S_{n} - S_{n - 1}$,代入$a_{n}(2S_{n} - a_{n}) = 1$,化简得$(S_{n} - S_{n - 1})(S_{n} + S_{n - 1}) = 1$,即$S_{n}^{2} - S_{n - 1}^{2} = 1(n \geqslant 2)$,所以$\{ S_{n}^{2}\}$是首项为$1$,公差为$1$的等差数列.
(3)由
(2)可知$S_{n}^{2} = n$.因为$\{ a_{n}\}$是正项数列,所以$S_{n} > 0$,从而$S_{n} = \sqrt{n}$.由$\frac{1}{S_{n} + S_{n + 1}} = \frac{1}{\sqrt{n} + \sqrt{n + 1}} = \sqrt{n + 1} - \sqrt{n}$,所以$T_{n} = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + ·s + (\sqrt{n + 1} - \sqrt{n}) = \sqrt{n + 1} - 1$.所以数列$\{\frac{1}{S_{n} + S_{n + 1}}\}$的前$n$项的和$T_{n} = \sqrt{n + 1} - 1$.
(1)由$a_{n}(2S_{n} - a_{n}) = 1$,令$n = 1$,有$a_{1}^{2} = 1$,因为$a_{n} > 0$,所以$a_{1} = 1$.令$n = 2$,有$a_{2}(a_{2} + 2a_{1}) = 1$,即$a_{2}^{2} + 2a_{2} = 1$,由$a_{2} > 0$,解得$a_{2} = \sqrt{2} - 1$.所以$S_{1} = 1$,$S_{2} = \sqrt{2}$.
(2)证明:当$n \geqslant 2$时,由$a_{n} = S_{n} - S_{n - 1}$,代入$a_{n}(2S_{n} - a_{n}) = 1$,化简得$(S_{n} - S_{n - 1})(S_{n} + S_{n - 1}) = 1$,即$S_{n}^{2} - S_{n - 1}^{2} = 1(n \geqslant 2)$,所以$\{ S_{n}^{2}\}$是首项为$1$,公差为$1$的等差数列.
(3)由
(2)可知$S_{n}^{2} = n$.因为$\{ a_{n}\}$是正项数列,所以$S_{n} > 0$,从而$S_{n} = \sqrt{n}$.由$\frac{1}{S_{n} + S_{n + 1}} = \frac{1}{\sqrt{n} + \sqrt{n + 1}} = \sqrt{n + 1} - \sqrt{n}$,所以$T_{n} = (\sqrt{2} - 1) + (\sqrt{3} - \sqrt{2}) + ·s + (\sqrt{n + 1} - \sqrt{n}) = \sqrt{n + 1} - 1$.所以数列$\{\frac{1}{S_{n} + S_{n + 1}}\}$的前$n$项的和$T_{n} = \sqrt{n + 1} - 1$.
12. (15 分)(2025·四川省攀枝花三模)已知数列$\{ a_{n}\}$的首项 $ a_{1}=1$,$a_{n}+a_{n + 1}=3 × 2^{n}$.
(1) 求证:$\{ a_{n}-2^{n}\}$是等比数列;
(2) 求数列$\{ a_{n}\}$的前 $ n $ 项和 $ S_{n}$;
(3) 令 $ b_{n}=\frac{n^{2}}{a_{n}-(-1)^{n}}$,求数列$\{ b_{n}\}$的最大项.
(1) 求证:$\{ a_{n}-2^{n}\}$是等比数列;
(2) 求数列$\{ a_{n}\}$的前 $ n $ 项和 $ S_{n}$;
(3) 令 $ b_{n}=\frac{n^{2}}{a_{n}-(-1)^{n}}$,求数列$\{ b_{n}\}$的最大项.
答案:
12.解:
(1)证明:因为$a_{n} + a_{n + 1} = 3 × 2^{n}$,所以$a_{n + 1} - 2^{n + 1} = - (a_{n} - 2^{n})$,又$a_{1} = 1$,所以$a_{1} - 2 = - 1$,所以$\{ a_{n} - 2^{n}\}$是以$- 1$为首项,$- 1$为公比的等比数列.
(2)由
(1)可得$a_{n} - 2^{n} = ( - 1)^{n}$,所以$a_{n} = 2^{n} + ( - 1)^{n}$,所以$S_{n} = 2^{1} + ( - 1)^{1} + 2^{2} + ( - 1)^{2} + ( - 1)^{2} + ·s + 2^{n} + ( - 1)^{n} = (2^{1} + 2^{2} + ·s + 2^{n}) + \lbrack( - 1)^{1} + ( - 1)^{2} + ·s + ( - 1)^{n}\rbrack = \frac{2(1 - 2^{n})}{1 - 2} + \frac{- 1\lbrack 1 - ( - 1)^{n}\rbrack}{1 - ( - 1)} = 2^{n + 1} - 2 + \frac{- 1 + ( - 1)^{n}}{2}$.
(3)由
(2)可得$b_{n} = \frac{n^{2}}{a_{n} - ( - 1)^{n}} = \frac{n^{2}}{2^{n}}$,则$b_{n + 1} - b_{n} = \frac{(n + 1)^{2}}{2^{n + 1}} - \frac{n^{2}}{2^{n}} = \frac{(n + 1)^{2} - 2n^{2}}{2^{n + 1}} = \frac{2n + 1 - n^{2}}{2^{n + 1}}$,所以当$1 \leqslant n \leqslant 2$时$b_{n + 1} - b_{n} > 0$,当$n \geqslant 3$时$b_{n + 1} - b_{n} < 0$,即$b_{1} < b_{2} < b_{3} > b_{4} > b_{5} > ·s$,所以数列$\{ b_{n}\}$的最大项为$b_{3} = \frac{9}{8}$.
(1)证明:因为$a_{n} + a_{n + 1} = 3 × 2^{n}$,所以$a_{n + 1} - 2^{n + 1} = - (a_{n} - 2^{n})$,又$a_{1} = 1$,所以$a_{1} - 2 = - 1$,所以$\{ a_{n} - 2^{n}\}$是以$- 1$为首项,$- 1$为公比的等比数列.
(2)由
(1)可得$a_{n} - 2^{n} = ( - 1)^{n}$,所以$a_{n} = 2^{n} + ( - 1)^{n}$,所以$S_{n} = 2^{1} + ( - 1)^{1} + 2^{2} + ( - 1)^{2} + ( - 1)^{2} + ·s + 2^{n} + ( - 1)^{n} = (2^{1} + 2^{2} + ·s + 2^{n}) + \lbrack( - 1)^{1} + ( - 1)^{2} + ·s + ( - 1)^{n}\rbrack = \frac{2(1 - 2^{n})}{1 - 2} + \frac{- 1\lbrack 1 - ( - 1)^{n}\rbrack}{1 - ( - 1)} = 2^{n + 1} - 2 + \frac{- 1 + ( - 1)^{n}}{2}$.
(3)由
(2)可得$b_{n} = \frac{n^{2}}{a_{n} - ( - 1)^{n}} = \frac{n^{2}}{2^{n}}$,则$b_{n + 1} - b_{n} = \frac{(n + 1)^{2}}{2^{n + 1}} - \frac{n^{2}}{2^{n}} = \frac{(n + 1)^{2} - 2n^{2}}{2^{n + 1}} = \frac{2n + 1 - n^{2}}{2^{n + 1}}$,所以当$1 \leqslant n \leqslant 2$时$b_{n + 1} - b_{n} > 0$,当$n \geqslant 3$时$b_{n + 1} - b_{n} < 0$,即$b_{1} < b_{2} < b_{3} > b_{4} > b_{5} > ·s$,所以数列$\{ b_{n}\}$的最大项为$b_{3} = \frac{9}{8}$.
查看更多完整答案,请扫码查看