2026年一本密卷高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
3. 已知 $ \sin\alpha-\cos(\alpha-\frac{\pi}{6}) = \frac{\sqrt{5}}{3} $,则 $ \cos(2\alpha-\frac{2\pi}{3}) $ 的值为(
A.$ \frac{4}{9} $
B.$ -\frac{1}{9} $
C.$ \frac{4}{5} $
D.$ -\frac{1}{5} $
B
)A.$ \frac{4}{9} $
B.$ -\frac{1}{9} $
C.$ \frac{4}{5} $
D.$ -\frac{1}{5} $
答案:
3. B $\sin\alpha - \cos(\alpha - \frac{\pi}{6}) = \frac{\sqrt{5}}{3}$,即$\sin\alpha - \cos\alpha\cos\frac{\pi}{6} - \sin\alpha\sin\frac{\pi}{6} = \frac{1}{2}\sin\alpha - \frac{\sqrt{3}}{2}\cos\alpha = \sin(\alpha - \frac{\pi}{3}) = \frac{\sqrt{5}}{3}$,
所以$\cos(2\alpha - \frac{2\pi}{3}) = 1 - 2\sin^2(\alpha - \frac{\pi}{3}) = 1 - \frac{10}{9} = -\frac{1}{9}$。故选B。
所以$\cos(2\alpha - \frac{2\pi}{3}) = 1 - 2\sin^2(\alpha - \frac{\pi}{3}) = 1 - \frac{10}{9} = -\frac{1}{9}$。故选B。
4. (多选)已知函数 $ f(x) = \sqrt{3}\sin2x+\sin^{4}x-\cos^{4}x,x\in\mathbf{R} $,则(
A.$ f(\frac{\pi}{6}+x)+f(-x) = 0 $
B.$ |f(x)|\leqslant f(\frac{\pi}{3}) $
C.$ f(x) $ 在 $ [-\frac{\pi}{4},\frac{\pi}{4}] $ 上单调递增
D.若 $ f(x+\varphi) $ 为偶函数,则 $ |\varphi| $ 的最小值为 $ \frac{\pi}{6} $
ABD
)A.$ f(\frac{\pi}{6}+x)+f(-x) = 0 $
B.$ |f(x)|\leqslant f(\frac{\pi}{3}) $
C.$ f(x) $ 在 $ [-\frac{\pi}{4},\frac{\pi}{4}] $ 上单调递增
D.若 $ f(x+\varphi) $ 为偶函数,则 $ |\varphi| $ 的最小值为 $ \frac{\pi}{6} $
答案:
4. ABD $f(x) = \sqrt{3}\sin2x + \sin^4x - \cos^4x = \sqrt{3}\sin2x + (\sin^2x + \cos^2x)(\sin^2x - \cos^2x) = \sqrt{3}\sin2x - \cos2x = 2\sin(2x - \frac{\pi}{6})$。若$f(\frac{\pi}{6} + x) + f(-x) = 0$,则函数$f(x)$的图象关于$(\frac{\pi}{12}, 0)$对称,$f(\frac{\pi}{12}) = 2\sin(2×\frac{\pi}{12} - \frac{\pi}{6}) = 0$,满足对称条件,A正确;因为$f(\frac{\pi}{3}) = 2\sin(2×\frac{\pi}{3} - \frac{\pi}{6}) = 2$,即函数$f(x)$在$x = \frac{\pi}{3}$处取得最大值,所以$\vert f(x)\vert \leq f(\frac{\pi}{3})$恒成立,B正确;由$x\in[-\frac{\pi}{4}, \frac{\pi}{4}]$,得$2x - \frac{\pi}{6}\in[-\frac{2\pi}{3}, \frac{\pi}{3}]$,所以函数$f(x)$在$[-\frac{\pi}{4}, \frac{\pi}{4}]$上不单调,C错误;$f(x + \varphi) = 2\sin[2(x + \varphi) - \frac{\pi}{6}] = 2\sin(2x + 2\varphi - \frac{\pi}{6})$,若其为偶函数,则$2\varphi - \frac{\pi}{6} = k\pi + \frac{\pi}{2}(k\in Z)$,则$\varphi = \frac{k\pi}{2} + \frac{\pi}{3}(k\in Z)$,所以$\vert\varphi\vert_{min} = \frac{\pi}{6}$,D正确。故选ABD。
5. 信息在传递中多数是以波的形式进行传递的,因而必然会存在干扰信号波(干扰信号波的解析式形如 $ y = A\sin(\omega x+\varphi)(A > 0,\omega > 0,|\varphi| < \frac{\pi}{2}) $).某种“信号净化器”可产生解析式形如 $ y = A_{0}\sin(\omega_{0}x+\varphi_{0}) $ 的波,只需要调整参数 $ (A_{0},\omega_{0},\varphi_{0}) $,就可以产生与干扰波波峰相同,方向相反的波来“抵消”干扰.右图是某个信号的部分图象,想要通过“信号净化器”过滤得到标准的正弦波(即仅含有标准正弦函数图象),可以将净化器的参数调整为(

A.$ A_{0} = \frac{3}{4},\omega_{0} = 4,\varphi_{0} = \frac{\pi}{6} $
B.$ A_{0} = -\frac{3}{4},\omega_{0} = 4,\varphi_{0} = \frac{\pi}{6} $
C.$ A_{0} = 1,\omega_{0} = 1,\varphi_{0} = 0 $
D.$ A_{0} = -1,\omega_{0} = 1,\varphi_{0} = 0 $
B
)A.$ A_{0} = \frac{3}{4},\omega_{0} = 4,\varphi_{0} = \frac{\pi}{6} $
B.$ A_{0} = -\frac{3}{4},\omega_{0} = 4,\varphi_{0} = \frac{\pi}{6} $
C.$ A_{0} = 1,\omega_{0} = 1,\varphi_{0} = 0 $
D.$ A_{0} = -1,\omega_{0} = 1,\varphi_{0} = 0 $
答案:
5. B 由题可知干扰波对应的函数解析式为$f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, \vert\varphi\vert < \frac{\pi}{2})$。
由题图得$\frac{\pi}{3} - (-\frac{\pi}{24}) = \frac{3}{4}T$($T$为干扰波的最小正周期),
可得$T = \frac{\pi}{2}$,所以$\omega = \frac{2\pi}{T} = 4$。
因为函数$f(x)$的最大值为$\frac{3}{4}$,
所以$A = \frac{3}{4}$,
将$(\frac{\pi}{3}, -\frac{3}{4})$代入$f(x) = \frac{3}{4}\sin(4x + \varphi)$,
得$\varphi = \frac{\pi}{6} + 2k\pi(k\in Z)$,
又$\vert\varphi\vert < \frac{\pi}{2}$,
所以$\varphi = \frac{\pi}{6}$,
所以$f(x) = \frac{3}{4}\sin(4x + \frac{\pi}{6})$。
欲消除此干扰波,需要选择波峰相同,方向相反的波,
所以$A_0 = -\frac{3}{4}$,$\omega_0 = 4$,$\varphi_0 = \frac{\pi}{6}$。故选B。
由题图得$\frac{\pi}{3} - (-\frac{\pi}{24}) = \frac{3}{4}T$($T$为干扰波的最小正周期),
可得$T = \frac{\pi}{2}$,所以$\omega = \frac{2\pi}{T} = 4$。
因为函数$f(x)$的最大值为$\frac{3}{4}$,
所以$A = \frac{3}{4}$,
将$(\frac{\pi}{3}, -\frac{3}{4})$代入$f(x) = \frac{3}{4}\sin(4x + \varphi)$,
得$\varphi = \frac{\pi}{6} + 2k\pi(k\in Z)$,
又$\vert\varphi\vert < \frac{\pi}{2}$,
所以$\varphi = \frac{\pi}{6}$,
所以$f(x) = \frac{3}{4}\sin(4x + \frac{\pi}{6})$。
欲消除此干扰波,需要选择波峰相同,方向相反的波,
所以$A_0 = -\frac{3}{4}$,$\omega_0 = 4$,$\varphi_0 = \frac{\pi}{6}$。故选B。
查看更多完整答案,请扫码查看