2026年一本密卷高考数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年一本密卷高考数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. (2025·天津市滨海新区三模)已知 $m,n$ 是两条不同的直线,$\alpha,\beta$ 是两个不同的平面,则下列命题正确的是(
A.若 $m// \alpha,n\subset \alpha$,则 $m// n$
B.若 $m// \alpha,m// n$,则 $n// \alpha$
C.若 $m\perp \alpha,n\perp \beta,m\perp n$,则 $\alpha\perp \beta$
D.若 $\alpha\perp \beta,\alpha\cap \beta = l,m\perp l$,则 $m\perp \alpha$
C
)A.若 $m// \alpha,n\subset \alpha$,则 $m// n$
B.若 $m// \alpha,m// n$,则 $n// \alpha$
C.若 $m\perp \alpha,n\perp \beta,m\perp n$,则 $\alpha\perp \beta$
D.若 $\alpha\perp \beta,\alpha\cap \beta = l,m\perp l$,则 $m\perp \alpha$
答案:
1.C 对于A,由$m// \alpha$,$n \subset \alpha$,则$m// n$或$m$,$n$异面,故A错误;对于B,由$m// \alpha$,$m// n$,则$n// \alpha$或$n \subset \alpha$,故B错误;对于C,由$m \perp \alpha$,$m \perp n$,则$n// \alpha$或$n \subset \alpha$,则在平面$\alpha$内存在直线$a// n$,而$n \perp \beta$,则$a\perp \beta$,所以$\alpha \perp \beta$,故C正确;对于D,由$\alpha \perp \beta$,$\alpha \cap \beta = l$,$m \perp l$,只有当$m \subset \beta$或$m// \beta$时,$m \perp \alpha$,故D错误.故选C.
2. (2025·山东省枣庄市三模)已知圆锥的体积为 $\frac{2\sqrt{2}\pi}{3}$,其侧面展开图是一个圆心角为 $\frac{2\pi}{3}$ 的扇形,则该圆锥的底面半径为(
A.$\frac{1}{2}$
B.1
C.$\sqrt{2}$
D.2
B
)A.$\frac{1}{2}$
B.1
C.$\sqrt{2}$
D.2
答案:
2.B 设母线长为$l$,底面半径为$r$,圆锥的高为$h$,则有$2\pi r = \frac{2\pi}{3}l \Rightarrow l = 3r$,又$h = \sqrt{l^{2} - r^{2}} = \sqrt{9r^{2} - r^{2}} = 2\sqrt{2}r$,所以$V = \frac{1}{3}Sh = \frac{1}{3}\pi r^{2} × 2\sqrt{2}r = \frac{2\sqrt{2}\pi r^{3}}{3}=1 \Rightarrow r^{3} =1 \Rightarrow r = 1$.故选B.
3. (2025·山东省泰安市三模)已知正三棱柱的表面积为 $6\sqrt{3}$,则当其体积取得最大值时,该三棱柱的高为(
A.3
B.$\frac{2\sqrt{3}}{3}$
C.$\frac{4\sqrt{3}}{3}$
D.$\frac{5\sqrt{2}}{4}$
B
)A.3
B.$\frac{2\sqrt{3}}{3}$
C.$\frac{4\sqrt{3}}{3}$
D.$\frac{5\sqrt{2}}{4}$
答案:
3.B 设正三棱柱的底面边长为$a$,高为$h$,则其表面积$S = 2 × \frac{\sqrt{3}}{4}a^{2} + 3ah = 6\sqrt{3}$,得$h = \frac{12 - a^{2}}{2\sqrt{3}a}$,又$h >0$,所以$0 < a < 2\sqrt{3}$,故正三棱柱的体积$V = \frac{\sqrt{3}}{4}a^{2}h =\frac{12a - a^{3}}{8}$,则$V'(a) = \frac{3}{2} - \frac{3}{8}a^{2}$,当$0 < a < 2$时,$V'(a) > 0$,$V(a)$单调递增,当$2 < a < 2\sqrt{3}$时,$V'(a) < 0$,$V(a)$单调递减,所以当$a = 2$时,该正三棱柱体积取得最大值,此时三棱柱的高为$\frac{2\sqrt{3}}{3}$.故选B.
4. (2025·辽宁沈阳三模)如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖. 可放小球的最大半径为 $r$. 若是放入一个正方体,合上盒盖,可放正方体的最大棱长为 $a$,则 $\frac{r}{a} =$(

A.$2 + \sqrt{2}$
B.$2 - \sqrt{2}$
C.$\frac{3}{2}(\sqrt{2} + 1)$
D.$\frac{3}{2}(\sqrt{2} - 1)$
D
)A.$2 + \sqrt{2}$
B.$2 - \sqrt{2}$
C.$\frac{3}{2}(\sqrt{2} + 1)$
D.$\frac{3}{2}(\sqrt{2} - 1)$
答案:
4.D 设储物盒所在球的半径为$R$,如图,
小球最大半径$r$满足$(\sqrt{2} + 1)r = R$,所以$r = \frac{R}{\sqrt{2} + 1}= (\sqrt{2} - 1)R$,正方体的最大棱长$a$满足$(\sqrt{2}a)^{2} + (\frac{a}{2})^{2} = R^{2}$,解得$a = \frac{2}{3}R$,所以$\frac{r}{a} = \frac{\sqrt{2} - 1}{\frac{2}{3}} = \frac{3}{2}(\sqrt{2}-1)$.故选D.
4.D 设储物盒所在球的半径为$R$,如图,
小球最大半径$r$满足$(\sqrt{2} + 1)r = R$,所以$r = \frac{R}{\sqrt{2} + 1}= (\sqrt{2} - 1)R$,正方体的最大棱长$a$满足$(\sqrt{2}a)^{2} + (\frac{a}{2})^{2} = R^{2}$,解得$a = \frac{2}{3}R$,所以$\frac{r}{a} = \frac{\sqrt{2} - 1}{\frac{2}{3}} = \frac{3}{2}(\sqrt{2}-1)$.故选D.
5. (2025·河北石家庄三模)在如图所示的试验装置中,正方形框架 $ABCD$ 的边长为 2,长方形框架 $ABEF$ 的长 $BE = \frac{3}{2}AB$,且它们所在平面形成的二面角 $C - AB - E$ 的大小为 $\frac{\pi}{3}$,活动弹子 $M,N$ 分别在对角线 $AC$ 和 $BF$ 上移动,且始终保持 $\frac{AM}{AC} = \frac{BN}{BF} = a$($0 < a < 1$),则 $MN$ 的长度最小时 $a$ 的取值为(

A.$\frac{8}{23}$
B.$\frac{6}{23}$
C.$\frac{6}{15}$
D.$\frac{2}{15}$
A
)A.$\frac{8}{23}$
B.$\frac{6}{23}$
C.$\frac{6}{15}$
D.$\frac{2}{15}$
答案:
5.A 由题意知,$AB \perp BC$,$AB \perp BE$,$\therefore \angle CBE$就是二面角$C - AB - E$的平面角,即$\angle CBE = \frac{\pi}{3}$,以$B$为原点,以$BA,BE$所在直线分别为$x,y$轴,过$B$点作$z$轴$\perp$平面$ABEF$,建立如图所示的空间直角坐标系,则$B(0,0,0)$,$A(2,0,0)$,$C(0,1,\sqrt{3})$,$F(2,3,0)$,$\therefore \overrightarrow{AC} = (-2,1,\sqrt{3})$,$\overrightarrow{BF} = (2,3,0)$,设$M(x,y,z)$,$N(m,n,0)$,由$\frac{AM}{AC} = \frac{BN}{BF} = a(0 < a <1)$,可知$\overrightarrow{AM} = a\overrightarrow{AC}$,$\overrightarrow{BN} = a\overrightarrow{BF}$,$\therefore (x - 2,y,z) = a(-2,1,\sqrt{3})$,$(m,n,0) = a(2,3,0)$,$\therefore\begin{cases} x - 2 = - 2a \\y = a \\z = \sqrt{3}a \end{cases}$,$\begin{cases} m = 2a \\n = 3a \end{cases}$,解得$x = 2 - 2a$,$M(2 - 2a,a,\sqrt{3}a)$,$N(2a,3a,0)$,$\therefore |MN|^{2} = (2 - 2a - 2a)^{2} + (a - 3a)^{2} + (\sqrt{3}a)^{2}= 23a^{2} - 16a + 4 = 23(a - \frac{8}{23})^{2} + \frac{28}{23}$,$\therefore$当$a = \frac{8}{23}$时,$|MN|^{2}$取到最小值,即$MN$取到最小值.故选A.
6. (2025·山东省枣庄市三模)已知正方体 $ABCD - A_1B_1C_1D_1$ 的棱长为 1,点 $P$ 在正方体的内切球表面上运动,且满足 $BP//$ 平面 $ACD_1$,则下列结论不正确的是(
A.$BP\perp B_1D$
B.点 $P$ 的轨迹长度为 $\pi$
C.线段 $BP$ 长度的最小值为 $\frac{\sqrt{6}}{6}$
D.$\overrightarrow{BP}·\overrightarrow{BC_1}$ 的最小值为 $1 - \frac{\sqrt{3}}{3}$
B
)A.$BP\perp B_1D$
B.点 $P$ 的轨迹长度为 $\pi$
C.线段 $BP$ 长度的最小值为 $\frac{\sqrt{6}}{6}$
D.$\overrightarrow{BP}·\overrightarrow{BC_1}$ 的最小值为 $1 - \frac{\sqrt{3}}{3}$
答案:
6.B 以$D$为原点,分别以$DA,DC,DD_{1}$所在直线为$x,y,z$轴,建立空间直角坐标系,则$D(0,0,0)$,$A(1,0,0)$,$C(0,1,0)$,$B(1,1,0)$,$D_{1}(0,0,1)$,$B_{1}(1,1,1)$,$A_{1}(1,0,1)$,$C_{1}(0,1,1)$,正方体的内切球的球心为正方体的中心$O(\frac{1}{2},\frac{1}{2},\frac{1}{2})$,半径$r = \frac{1}{2}$,平面$ACD_{1}$的法向量$\mathbf{n}$,$\overrightarrow{AC} = (-1,1,0)$,$\overrightarrow{AD_{1}} = (-1,0,1)$,设$\mathbf{n} = (x,y,z)$,由$\begin{cases} \mathbf{n} · \overrightarrow{AC} = 0 \\\mathbf{n} · \overrightarrow{AD_{1}} = 0 \end{cases}$,即$\begin{cases} - x + y = 0 \\- x + z = 0 \end{cases}$,令$x = 1$,则$y = 1$,$z = 1$,所以$\mathbf{n} = (1,1,1)$.对于选项A,$\overrightarrow{B_{1}D} = (-1,-1,-1)$,因为$BP//$平面$ACD_{1}$,所以$\overrightarrow{BP} · \mathbf{n} = 0$,而$\overrightarrow{B_{1}D} = -\mathbf{n}$,所以$\overrightarrow{BP} · \overrightarrow{B_{1}D} = 0$,即$BP \perp B_{1}D$,A正确.对于选项B,因为$BP//$平面$ACD_{1}$,平面$ACD_{1}//$平面$A_{1}BC_{1}$,所以点$P$的轨迹是平面$A_{1}BC_{1}$与正方体内切球的交线,此交线为圆,记圆心为$O_{1}$.设平面$A_{1}BC_{1}$与正方体的中心$O$的距离$d$,设平面$A_{1}BC_{1}$的法向量为$\mathbf{m}$,$\overrightarrow{BA_{1}} = (0,-1,1)$,$\overrightarrow{BC_{1}} = (-1,0,1)$,设$\mathbf{m} = (a,b,c)$,由$\begin{cases} \mathbf{m} · \overrightarrow{BA_{1}} = 0 \\\mathbf{m} · \overrightarrow{BC_{1}} = 0 \end{cases}$,可得$\begin{cases} - b + c = 0 \\- a + c = 0 \end{cases}$,令$a = 1$,则$\mathbf{m} = (1,1,1)$.$\overrightarrow{OA_{1}} = (\frac{1}{2}, - \frac{1}{2},\frac{1}{2})$,$\therefore$点$O$到平面$A_{1}BC_{1}$的距离为$d = \frac{|\overrightarrow{OA_{1}} · \mathbf{m}|}{|\mathbf{m}|} =\frac{|\frac{1}{2} - \frac{1}{2} + \frac{1}{2}|}{\sqrt{3}} = \frac{\sqrt{3}}{6}$,$\therefore$圆$O_{1}$的半径为$r_{1} = \sqrt{r^{2} - d^{2}} = \sqrt{(\frac{1}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{6}$,圆的周长$l = 2\pi r_{1}= \frac{\sqrt{6}}{3}\pi$,即点$P$的轨迹长度为$\frac{\sqrt{6}}{3}\pi$,B错误.对于选项C,$BO_{1} = \sqrt{BO^{2} - d^{2}} =\sqrt{(\frac{\sqrt{3}}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{3}$,点$P$在球面上,$BO = \sqrt{BO^{2} - d^{2}} =\sqrt{(\frac{\sqrt{3}}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{3}$,线段$BP$长度的最小值为$BO_{1} - \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{3} - \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{3}$,C选项正确.对于选项D,设$\overrightarrow{BP}$与$\overrightarrow{BC_{1}}$夹角为$\theta$,$\overrightarrow{BC_{1}} = (-1,0,1)$,$|\overrightarrow{BC_{1}}| =\sqrt{2}$.在平面直角坐标系中,$B(0,\frac{\sqrt{6}}{2})$,$C_{1}( - \frac{\sqrt{2}}{2},0)$,$P(x,y)$,$O_{1}(0,\frac{\sqrt{6}}{6})$,$\overrightarrow{BC} = ( - \frac{\sqrt{2}}{2}, - \frac{\sqrt{6}}{2})$,$\overrightarrow{BP} =(x,y - \frac{\sqrt{6}}{2})$,所以$x^{2} + (y - \frac{\sqrt{6}}{2})^{2} = (\frac{\sqrt{6}}{6})^{2}$,令$x = \frac{\sqrt{6}}{6}\cos\theta$,$y = \frac{\sqrt{6}}{6}\sin\theta + \frac{\sqrt{6}}{2}$,$\overrightarrow{BP} · \overrightarrow{BC} = - \frac{\sqrt{2}}{2}x - \frac{\sqrt{6}}{2}y + \frac{3}{2} = 1 - \frac{\sqrt{3}}{3}\sin(\theta + \frac{\pi}{6}) \geq 1 - \frac{\sqrt{3}}{3}$,所以$\overrightarrow{BP} · \overrightarrow{BC}$的最小值为$1 - \frac{\sqrt{3}}{3}$,D选项正确.故选B.
6.B 以$D$为原点,分别以$DA,DC,DD_{1}$所在直线为$x,y,z$轴,建立空间直角坐标系,则$D(0,0,0)$,$A(1,0,0)$,$C(0,1,0)$,$B(1,1,0)$,$D_{1}(0,0,1)$,$B_{1}(1,1,1)$,$A_{1}(1,0,1)$,$C_{1}(0,1,1)$,正方体的内切球的球心为正方体的中心$O(\frac{1}{2},\frac{1}{2},\frac{1}{2})$,半径$r = \frac{1}{2}$,平面$ACD_{1}$的法向量$\mathbf{n}$,$\overrightarrow{AC} = (-1,1,0)$,$\overrightarrow{AD_{1}} = (-1,0,1)$,设$\mathbf{n} = (x,y,z)$,由$\begin{cases} \mathbf{n} · \overrightarrow{AC} = 0 \\\mathbf{n} · \overrightarrow{AD_{1}} = 0 \end{cases}$,即$\begin{cases} - x + y = 0 \\- x + z = 0 \end{cases}$,令$x = 1$,则$y = 1$,$z = 1$,所以$\mathbf{n} = (1,1,1)$.对于选项A,$\overrightarrow{B_{1}D} = (-1,-1,-1)$,因为$BP//$平面$ACD_{1}$,所以$\overrightarrow{BP} · \mathbf{n} = 0$,而$\overrightarrow{B_{1}D} = -\mathbf{n}$,所以$\overrightarrow{BP} · \overrightarrow{B_{1}D} = 0$,即$BP \perp B_{1}D$,A正确.对于选项B,因为$BP//$平面$ACD_{1}$,平面$ACD_{1}//$平面$A_{1}BC_{1}$,所以点$P$的轨迹是平面$A_{1}BC_{1}$与正方体内切球的交线,此交线为圆,记圆心为$O_{1}$.设平面$A_{1}BC_{1}$与正方体的中心$O$的距离$d$,设平面$A_{1}BC_{1}$的法向量为$\mathbf{m}$,$\overrightarrow{BA_{1}} = (0,-1,1)$,$\overrightarrow{BC_{1}} = (-1,0,1)$,设$\mathbf{m} = (a,b,c)$,由$\begin{cases} \mathbf{m} · \overrightarrow{BA_{1}} = 0 \\\mathbf{m} · \overrightarrow{BC_{1}} = 0 \end{cases}$,可得$\begin{cases} - b + c = 0 \\- a + c = 0 \end{cases}$,令$a = 1$,则$\mathbf{m} = (1,1,1)$.$\overrightarrow{OA_{1}} = (\frac{1}{2}, - \frac{1}{2},\frac{1}{2})$,$\therefore$点$O$到平面$A_{1}BC_{1}$的距离为$d = \frac{|\overrightarrow{OA_{1}} · \mathbf{m}|}{|\mathbf{m}|} =\frac{|\frac{1}{2} - \frac{1}{2} + \frac{1}{2}|}{\sqrt{3}} = \frac{\sqrt{3}}{6}$,$\therefore$圆$O_{1}$的半径为$r_{1} = \sqrt{r^{2} - d^{2}} = \sqrt{(\frac{1}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{6}$,圆的周长$l = 2\pi r_{1}= \frac{\sqrt{6}}{3}\pi$,即点$P$的轨迹长度为$\frac{\sqrt{6}}{3}\pi$,B错误.对于选项C,$BO_{1} = \sqrt{BO^{2} - d^{2}} =\sqrt{(\frac{\sqrt{3}}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{3}$,点$P$在球面上,$BO = \sqrt{BO^{2} - d^{2}} =\sqrt{(\frac{\sqrt{3}}{2})^{2} - (\frac{\sqrt{3}}{6})^{2}} = \frac{\sqrt{6}}{3}$,线段$BP$长度的最小值为$BO_{1} - \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{3} - \frac{\sqrt{6}}{3} = \frac{\sqrt{6}}{3}$,C选项正确.对于选项D,设$\overrightarrow{BP}$与$\overrightarrow{BC_{1}}$夹角为$\theta$,$\overrightarrow{BC_{1}} = (-1,0,1)$,$|\overrightarrow{BC_{1}}| =\sqrt{2}$.在平面直角坐标系中,$B(0,\frac{\sqrt{6}}{2})$,$C_{1}( - \frac{\sqrt{2}}{2},0)$,$P(x,y)$,$O_{1}(0,\frac{\sqrt{6}}{6})$,$\overrightarrow{BC} = ( - \frac{\sqrt{2}}{2}, - \frac{\sqrt{6}}{2})$,$\overrightarrow{BP} =(x,y - \frac{\sqrt{6}}{2})$,所以$x^{2} + (y - \frac{\sqrt{6}}{2})^{2} = (\frac{\sqrt{6}}{6})^{2}$,令$x = \frac{\sqrt{6}}{6}\cos\theta$,$y = \frac{\sqrt{6}}{6}\sin\theta + \frac{\sqrt{6}}{2}$,$\overrightarrow{BP} · \overrightarrow{BC} = - \frac{\sqrt{2}}{2}x - \frac{\sqrt{6}}{2}y + \frac{3}{2} = 1 - \frac{\sqrt{3}}{3}\sin(\theta + \frac{\pi}{6}) \geq 1 - \frac{\sqrt{3}}{3}$,所以$\overrightarrow{BP} · \overrightarrow{BC}$的最小值为$1 - \frac{\sqrt{3}}{3}$,D选项正确.故选B.
7. (2025·四川省宜宾市三模)“阿基米德多面体”也称半正多面体,是由两种或多种正多边形面组成,而又不属于正多面体的凸多面体,体现了数学的对称美. 如图,某广场的一张石凳就是一个阿基米德多面体,它是由正方体截去八个一样的四面体得到的二十四等边体,若它所有的棱长都为 2,则(

A.该石凳的表面积为 $24 + 8\sqrt{3}$
B.该石凳的体积为 $\frac{40\sqrt{2}}{3}$
C.直线 $LH$ 与 $BC$ 的夹角为 $60^{\circ}$
D.$DH\perp$ 平面 $LEI$
ABC
)A.该石凳的表面积为 $24 + 8\sqrt{3}$
B.该石凳的体积为 $\frac{40\sqrt{2}}{3}$
C.直线 $LH$ 与 $BC$ 的夹角为 $60^{\circ}$
D.$DH\perp$ 平面 $LEI$
答案:
7.ABC 对于A,由图可知,二十四等边体是由6个边长为2的正方形和8个边长为2的等边三角形围成,所以表面积为$6 × 2 × 2 + 8 × \frac{1}{2} × 2 × 2\sin 60^{\circ}= 24 + 8\sqrt{3}$,A正确;对于B,补全八个角构成一个棱长为$2\sqrt{2}$的一个正方体,则该正方体的体积为$V =(2\sqrt{2})^{3} = 16\sqrt{2}$,其中每个小三棱锥的体积为$V_{1} =\frac{1}{3} × \frac{1}{2} × \sqrt{2} × \sqrt{2} × \sqrt{2} = \frac{\sqrt{2}}{3}$,所以该二十四面体的体积为$16\sqrt{2} - 8 × \frac{\sqrt{2}}{3} = \frac{40\sqrt{2}}{3}$,所以B正确;
对于C,补全八个角构成一个棱长为$2\sqrt{2}$的一个正方体,如图,易知$LH// FC$,$FC$与$BC$所成角为$60^{\circ}$,所以直线$LH$与$BC$的夹角为$60^{\circ}$,C正确;对于D,由正方体易知:$DH// BE$,$LI// AB$,$AB$,$EB$所成角为$60^{\circ}$,所以$DH$,$LI$所成角为$60^{\circ}$,又$LI$在平面$LEI$内,所以$DH \perp$平面$LEI$不成立,故D错误.故选ABC.
7.ABC 对于A,由图可知,二十四等边体是由6个边长为2的正方形和8个边长为2的等边三角形围成,所以表面积为$6 × 2 × 2 + 8 × \frac{1}{2} × 2 × 2\sin 60^{\circ}= 24 + 8\sqrt{3}$,A正确;对于B,补全八个角构成一个棱长为$2\sqrt{2}$的一个正方体,则该正方体的体积为$V =(2\sqrt{2})^{3} = 16\sqrt{2}$,其中每个小三棱锥的体积为$V_{1} =\frac{1}{3} × \frac{1}{2} × \sqrt{2} × \sqrt{2} × \sqrt{2} = \frac{\sqrt{2}}{3}$,所以该二十四面体的体积为$16\sqrt{2} - 8 × \frac{\sqrt{2}}{3} = \frac{40\sqrt{2}}{3}$,所以B正确;
对于C,补全八个角构成一个棱长为$2\sqrt{2}$的一个正方体,如图,易知$LH// FC$,$FC$与$BC$所成角为$60^{\circ}$,所以直线$LH$与$BC$的夹角为$60^{\circ}$,C正确;对于D,由正方体易知:$DH// BE$,$LI// AB$,$AB$,$EB$所成角为$60^{\circ}$,所以$DH$,$LI$所成角为$60^{\circ}$,又$LI$在平面$LEI$内,所以$DH \perp$平面$LEI$不成立,故D错误.故选ABC.
查看更多完整答案,请扫码查看