2025年万唯中考大小卷九年级数学全一册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年万唯中考大小卷九年级数学全一册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
18. (8分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB于点D,点E为AC的中点,连接ED并延长与CB的延长线交于点F.
(1)求证:DE为⊙O的切线;
(2)若BC=4,$\frac{BF}{FD}=\frac{3}{5}$,求FC的长.

(1)求证:DE为⊙O的切线;
(2)若BC=4,$\frac{BF}{FD}=\frac{3}{5}$,求FC的长.
答案:
(1) 证明:如解图,连接 $OD,CD$, $\because BC$ 为 $\odot O$ 的直径, $\therefore\angle BDC = 90^{\circ},\therefore\angle ADC = 90^{\circ}$. $\because$ 点 $E$ 为 $AC$ 的中点, $\therefore DE = CE,\therefore\angle DCE = \angle CDE$. $\because OC = OD,\therefore\angle OCD = \angle ODC$. $\because\angle ACB = 90^{\circ}$,即 $\angle OCD + \angle DCE = 90^{\circ}$, $\therefore\angle ODC + \angle CDE = 90^{\circ}$,即 $OD\perp DE$. $\because OD$ 是 $\odot O$ 的半径, $\therefore DE$ 为 $\odot O$ 的切线;(4分)

(2) 解:设 $BF = 3x$,则 $FD = 5x$, $\because BC$ 是 $\odot O$ 的直径,$BC = 4$, $\therefore OB = OD = 2$. 由
(1)知 $\angle ODF = 90^{\circ}$,$\therefore$ 在 $Rt\triangle ODF$ 中,由勾股定理得 $OD^{2}+FD^{2}=OF^{2}$, 即 $2^{2}+(5x)^{2}=(2 + 3x)^{2}$, 解得 $x_{1}=0$(舍去),$x_{2}=\frac{3}{4}$, $\therefore BF = 3x = 3\times\frac{3}{4}=\frac{9}{4}$, $\therefore FC = BC + BF = 4+\frac{9}{4}=\frac{25}{4}$. (8分)
(1) 证明:如解图,连接 $OD,CD$, $\because BC$ 为 $\odot O$ 的直径, $\therefore\angle BDC = 90^{\circ},\therefore\angle ADC = 90^{\circ}$. $\because$ 点 $E$ 为 $AC$ 的中点, $\therefore DE = CE,\therefore\angle DCE = \angle CDE$. $\because OC = OD,\therefore\angle OCD = \angle ODC$. $\because\angle ACB = 90^{\circ}$,即 $\angle OCD + \angle DCE = 90^{\circ}$, $\therefore\angle ODC + \angle CDE = 90^{\circ}$,即 $OD\perp DE$. $\because OD$ 是 $\odot O$ 的半径, $\therefore DE$ 为 $\odot O$ 的切线;(4分)
(2) 解:设 $BF = 3x$,则 $FD = 5x$, $\because BC$ 是 $\odot O$ 的直径,$BC = 4$, $\therefore OB = OD = 2$. 由
(1)知 $\angle ODF = 90^{\circ}$,$\therefore$ 在 $Rt\triangle ODF$ 中,由勾股定理得 $OD^{2}+FD^{2}=OF^{2}$, 即 $2^{2}+(5x)^{2}=(2 + 3x)^{2}$, 解得 $x_{1}=0$(舍去),$x_{2}=\frac{3}{4}$, $\therefore BF = 3x = 3\times\frac{3}{4}=\frac{9}{4}$, $\therefore FC = BC + BF = 4+\frac{9}{4}=\frac{25}{4}$. (8分)
19. (10分)如图,AB是⊙O的直径,C,D在⊙O上,AC平分∠BAD,过点C作⊙O的切线与AB的延长线交于点P,连接BD.
(1)求证:BD//CP;
(2)若sin P=$\frac{3}{5}$,BP=2,求BD的长.

(1)求证:BD//CP;
(2)若sin P=$\frac{3}{5}$,BP=2,求BD的长.
答案:
(1) 证明:如解图,连接 $OC$, $\because CP$ 是 $\odot O$ 的切线,$\therefore\angle OCP = 90^{\circ}$, $\therefore\angle COP+\angle P = 90^{\circ}$. $\because AB$ 是 $\odot O$ 的直径,$\therefore\angle ADB = 90^{\circ}$, $\therefore\angle DAB+\angle DBA = 90^{\circ}$. $\because AC$ 平分 $\angle BAD$,$\therefore\angle BAD = 2\angle BAC$. $\because\angle BOC = 2\angle BAC$, $\therefore\angle BAD = \angle BOC$,$\therefore\angle DBA = \angle P$, $\therefore BD// CP$;(5分)
(2) 解:由
(1)得 $\angle OCP = 90^{\circ}$, 设 $\odot O$ 的半径为 $r$, $\because\sin P=\frac{3}{5},BP = 2$, $\therefore\frac{OC}{OP}=\frac{r}{r + 2}=\sin P=\frac{3}{5}$, 解得 $r = 3$, $\therefore AB = 6$. (8分) 由
(1)得 $\angle DBA = \angle P$, $\therefore\sin\angle DBA=\sin P=\frac{3}{5}$. $\because\angle ADB = 90^{\circ}$, $\therefore AD = AB\cdot\sin\angle DBA = 6\times\frac{3}{5}=\frac{18}{5}$, $\therefore BD=\sqrt{AB^{2}-AD^{2}}=\frac{24}{5}$. (10分)

(1) 证明:如解图,连接 $OC$, $\because CP$ 是 $\odot O$ 的切线,$\therefore\angle OCP = 90^{\circ}$, $\therefore\angle COP+\angle P = 90^{\circ}$. $\because AB$ 是 $\odot O$ 的直径,$\therefore\angle ADB = 90^{\circ}$, $\therefore\angle DAB+\angle DBA = 90^{\circ}$. $\because AC$ 平分 $\angle BAD$,$\therefore\angle BAD = 2\angle BAC$. $\because\angle BOC = 2\angle BAC$, $\therefore\angle BAD = \angle BOC$,$\therefore\angle DBA = \angle P$, $\therefore BD// CP$;(5分)
(2) 解:由
(1)得 $\angle OCP = 90^{\circ}$, 设 $\odot O$ 的半径为 $r$, $\because\sin P=\frac{3}{5},BP = 2$, $\therefore\frac{OC}{OP}=\frac{r}{r + 2}=\sin P=\frac{3}{5}$, 解得 $r = 3$, $\therefore AB = 6$. (8分) 由
(1)得 $\angle DBA = \angle P$, $\therefore\sin\angle DBA=\sin P=\frac{3}{5}$. $\because\angle ADB = 90^{\circ}$, $\therefore AD = AB\cdot\sin\angle DBA = 6\times\frac{3}{5}=\frac{18}{5}$, $\therefore BD=\sqrt{AB^{2}-AD^{2}}=\frac{24}{5}$. (10分)
查看更多完整答案,请扫码查看