2025年万唯中考大小卷九年级数学全一册沪科版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年万唯中考大小卷九年级数学全一册沪科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
19. (10 分)已知二次函数$y = ax^{2}+bx - 3$的图象经过$(-1,-4)$和$(1,0)$两点.
(1)求二次函数的表达式;
(2)若点$A(x_{1},y_{1})$,$B(x_{2},y_{2})$都在二次函数图象上,且$x_{1}+x_{2}=2$.
①当$1<x_{1}<3$时,比较$y_{1}$与$y_{2}$的大小;
②求$y_{1}+y_{2}$的取值范围.
(1)求二次函数的表达式;
(2)若点$A(x_{1},y_{1})$,$B(x_{2},y_{2})$都在二次函数图象上,且$x_{1}+x_{2}=2$.
①当$1<x_{1}<3$时,比较$y_{1}$与$y_{2}$的大小;
②求$y_{1}+y_{2}$的取值范围.
答案:
解:
(1) 二次函数的表达式为$y = x^{2}+2x - 3$;…(3分)
(2) ①根据
(1)可知,对称轴为直线$x =-\frac{b}{2a}=-1$, $\because x_1 + x_2 = 2$,$1\lt x_1\lt3$, $\therefore -1\lt x_2\lt1$。 $\because a = 1\gt0$, $\therefore$当$x\gt - 1$时,$y$随$x$的增大而增大, $\therefore y_1\gt y_2$;……(6分) ②$\because y_1 + y_2 = x_1^{2}+2x_1 - 3+[(2 - x_1)^{2}+2(2 - x_1)-3]=2x_1^{2}-4x_1 + 2 = 2(x_1 - 1)^{2}$, $\therefore$当$x_1 = 1$时,$y_1 + y_2$有最小值0, $\therefore y_1 + y_2\geq0$。……(10分)
(1) 二次函数的表达式为$y = x^{2}+2x - 3$;…(3分)
(2) ①根据
(1)可知,对称轴为直线$x =-\frac{b}{2a}=-1$, $\because x_1 + x_2 = 2$,$1\lt x_1\lt3$, $\therefore -1\lt x_2\lt1$。 $\because a = 1\gt0$, $\therefore$当$x\gt - 1$时,$y$随$x$的增大而增大, $\therefore y_1\gt y_2$;……(6分) ②$\because y_1 + y_2 = x_1^{2}+2x_1 - 3+[(2 - x_1)^{2}+2(2 - x_1)-3]=2x_1^{2}-4x_1 + 2 = 2(x_1 - 1)^{2}$, $\therefore$当$x_1 = 1$时,$y_1 + y_2$有最小值0, $\therefore y_1 + y_2\geq0$。……(10分)
20. (10 分)如图,$\triangle ABC$和$\triangle BDE$均为等腰直角三角形,$\angle ACB = \angle BED = 90^{\circ}$,$C$,$B$,$D$三点共线,连接$AD$交$BE$于点$F$,连接$CE$.
(1)求证:$\triangle ABD\sim\triangle CBE$;
(2)若$AB = 4$,$DE = 6$,求$EF$的长.

(1)求证:$\triangle ABD\sim\triangle CBE$;
(2)若$AB = 4$,$DE = 6$,求$EF$的长.
答案:
(1) 证明:$\because \triangle ABC$和$\triangle BDE$是等腰直角三角形, $\therefore AB=\sqrt{2}BC$,$BD=\sqrt{2}BE$,$\angle ABC=\angle EBD = 45^{\circ}$, $\therefore \frac{AB}{CB}=\frac{BD}{BE}=\sqrt{2}$,$\angle ABD=\angle CBE = 135^{\circ}$, $\therefore \triangle ABD\sim\triangle CBE$;……(5分)
(2) 解:$\because \triangle ABC$和$\triangle BDE$是等腰直角三角形, $\therefore BE = DE = 6$,$\angle ABC=\angle EBD = 45^{\circ}$,$\angle BED = 90^{\circ}$, $\therefore \angle ABE = 180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}=\angle BED$。 又$\because \angle AFB=\angle DFE$, $\therefore \triangle ABF\sim\triangle DEF$, $\therefore \frac{EF}{BF}=\frac{DE}{AB}=\frac{6}{4}$,$\therefore \frac{EF}{BE}=\frac{6}{10}$, $\therefore EF=\frac{6}{10}BE=\frac{18}{5}$。……(10分)
(1) 证明:$\because \triangle ABC$和$\triangle BDE$是等腰直角三角形, $\therefore AB=\sqrt{2}BC$,$BD=\sqrt{2}BE$,$\angle ABC=\angle EBD = 45^{\circ}$, $\therefore \frac{AB}{CB}=\frac{BD}{BE}=\sqrt{2}$,$\angle ABD=\angle CBE = 135^{\circ}$, $\therefore \triangle ABD\sim\triangle CBE$;……(5分)
(2) 解:$\because \triangle ABC$和$\triangle BDE$是等腰直角三角形, $\therefore BE = DE = 6$,$\angle ABC=\angle EBD = 45^{\circ}$,$\angle BED = 90^{\circ}$, $\therefore \angle ABE = 180^{\circ}-45^{\circ}-45^{\circ}=90^{\circ}=\angle BED$。 又$\because \angle AFB=\angle DFE$, $\therefore \triangle ABF\sim\triangle DEF$, $\therefore \frac{EF}{BF}=\frac{DE}{AB}=\frac{6}{4}$,$\therefore \frac{EF}{BE}=\frac{6}{10}$, $\therefore EF=\frac{6}{10}BE=\frac{18}{5}$。……(10分)
查看更多完整答案,请扫码查看