2025年1加1轻巧夺冠完美期末七年级数学上册人教版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末七年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
7. (葫芦岛连山期末)如图,已知$\angle AOC = 90^{\circ}$,$\angle COB = 60^{\circ}$,$OD$平分$\angle AOB$,则$\angle COD$的度数是(

A.$35^{\circ}$
B.$30^{\circ}$
C.$25^{\circ}$
D.$15^{\circ}$
D
)A.$35^{\circ}$
B.$30^{\circ}$
C.$25^{\circ}$
D.$15^{\circ}$
答案:
D
8. (抚顺新宾期末)如图1和图2所示,把一副三角板先后放在$\angle AOB$上,则$\angle AOB$的度数可能是(

A.$60^{\circ}$
B.$50^{\circ}$
C.$40^{\circ}$
D.$30^{\circ}$
C
)A.$60^{\circ}$
B.$50^{\circ}$
C.$40^{\circ}$
D.$30^{\circ}$
答案:
C
9. (盘锦大洼期末)若关于$x$的方程$ax + 2 = x$的解是$x = -2$,则$a$的值为(
A.2
B.0
C.1
D.-1
A
)A.2
B.0
C.1
D.-1
答案:
A
10. (抚顺清原期末)下列能用$2a + 4$表示的是(

C
)
答案:
C [解析]A.线段AB的长为$2 + a + 4 = 6 + a$,不符合题意;B.组合图形的面积为$2 × (a + 4) = 2a + 8$,不符合题意;C.长方形的周长为$2(a + 2) = 2a + 4$,符合题意;D.圆柱的体积为$4a$,不符合题意.
11. (大连金普期末)已知方程$3x - ▲ = 10$,▲处被墨水盖住了,若该方程的解是$x = 4$,那么▲处的数字是
2
答案:
2
12. (铁岭期末)已知$\vert x + 2\vert + (3 - y)^{2} = 0$,则$x^{y}$的值是
-8
.
答案:
-8
13. (抚顺清原期末)某公园准备修建一块长方形草坪,长为35m,宽为25m,并在草坪上修建如图所示的十字路,已知十字路宽$x$m,则修建的十字路的面积是

$(60x - x^2)$
$m^{2}$.(用含$x$的代数式表示)
答案:
$(60x - x^2)$
14. (大连甘井子期末)如图,点$A$,$O$,$B$在同一条直线上,射线$OD$和射线$OE$分别平分$\angle AOC$和$\angle BOC$,则$\angle COE$的余角是

$\angle COD$或$\angle AOD$
.
答案:
$\angle COD$或$\angle AOD$ [解析]
∵射线OD和射线OE分别平分$\angle AOC$和$\angle BOC$,
∴$\angle AOD = \angle COD = \frac{1}{2} \angle AOC$,$\angle COE = \angle BOE = \frac{1}{2} \angle BOC$,$\angle AOC + \angle BOC = 180^{\circ}$,$\angle COD + \angle COE = \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = \frac{1}{2} (\angle AOC + \angle BOC) = \frac{1}{2} × 180^{\circ} = 90^{\circ}$,
∴$\angle COE + \angle AOD = 90^{\circ}$,
∴$\angle COE$的余角是$\angle COD$或$\angle AOD$.
∵射线OD和射线OE分别平分$\angle AOC$和$\angle BOC$,
∴$\angle AOD = \angle COD = \frac{1}{2} \angle AOC$,$\angle COE = \angle BOE = \frac{1}{2} \angle BOC$,$\angle AOC + \angle BOC = 180^{\circ}$,$\angle COD + \angle COE = \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = \frac{1}{2} (\angle AOC + \angle BOC) = \frac{1}{2} × 180^{\circ} = 90^{\circ}$,
∴$\angle COE + \angle AOD = 90^{\circ}$,
∴$\angle COE$的余角是$\angle COD$或$\angle AOD$.
15. (盘锦大洼期末)已知线段$AB = 10$cm,直线$AB$上有一点$C$,且$BC = 4$cm,$M$是线段$AC$的中点,则线段$BM$的长为
7或3
cm.
答案:
7或3 [解析]当点C在线段AB上时,$AC = AB - BC = 10 - 4 = 6$,
∵点M是线段AC的中点,
∴$MA = \frac{1}{2} AC = 3$,
∴$BM = AB - AM = 10 - 3 = 7$;当点C在线段AB的反向延长线上时,$AC = AB + BC = 10 + 4 = 14$,
∵M是线段AC的中点,
∴$AM = \frac{1}{2} AC = 7$,
∴$BM = AB - AM = 10 - 7 = 3$.
∵点M是线段AC的中点,
∴$MA = \frac{1}{2} AC = 3$,
∴$BM = AB - AM = 10 - 3 = 7$;当点C在线段AB的反向延长线上时,$AC = AB + BC = 10 + 4 = 14$,
∵M是线段AC的中点,
∴$AM = \frac{1}{2} AC = 7$,
∴$BM = AB - AM = 10 - 7 = 3$.
查看更多完整答案,请扫码查看