2025年1加1轻巧夺冠完美期末七年级数学上册人教版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末七年级数学上册人教版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
20. (8分)(大连西岗期末)
点$O$在直线$AF$上,射线$OB$,$OC$,$OD$,$OE$在直线$AF$的上方,且$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$.
(1)如图,$OE$在$\angle COF$的内部,且$OD$平分$\angle BOE$.
①若$\angle COD = 20^{\circ}$,则$\angle EOF =$
②若$\angle COD = n^{\circ}$,则$\angle EOF =$
(2)当$OE$在$\angle BOC$的内部,且$OD$平分$\angle BOE$时,请画出图形;此时,$\angle COD$与$\angle EOF$有怎样的数量关系?请说明理由.

点$O$在直线$AF$上,射线$OB$,$OC$,$OD$,$OE$在直线$AF$的上方,且$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$.
(1)如图,$OE$在$\angle COF$的内部,且$OD$平分$\angle BOE$.
①若$\angle COD = 20^{\circ}$,则$\angle EOF =$
40°
;②若$\angle COD = n^{\circ}$,则$\angle EOF =$
$(80-2n)$
$^{\circ}$.(用含$n$的代数式表示)(2)当$OE$在$\angle BOC$的内部,且$OD$平分$\angle BOE$时,请画出图形;此时,$\angle COD$与$\angle EOF$有怎样的数量关系?请说明理由.
答案:
20.解:
(1)①$40^{\circ}$ [解析]
∵$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$,
∴$\angle BOC = \angle AOC - \angle AOB = 70^{\circ} - 40^{\circ} = 30^{\circ}$,
∵$OD$平分$\angle BOE$,$\angle COD = 20^{\circ}$,
∴$\angle DOE = \angle BOD = \angle BOC + \angle COD = 30^{\circ} + 20^{\circ} = 50^{\circ}$,
∵点O在直线AF上,
∴$\angle AOB + \angle BOD + \angle DOE + \angle EOF = 180^{\circ}$,即$40^{\circ} + 50^{\circ} + 50^{\circ} + \angle EOF = 180^{\circ}$,解得$\angle EOF = 40^{\circ}$.
②$(80 - 2n)^{\circ}$ [解析]
∵$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$,
∴$\angle BOC = \angle AOC - \angle AOB = 70^{\circ} - 40^{\circ} = 30^{\circ}$,
∵$OD$平分$\angle BOE$,$\angle COD = n^{\circ}$,
∴$\angle DOE = \angle BOD = \angle BOC + \angle COD = 30^{\circ} + n^{\circ}$,
∵点O在直线AF上,
∴$\angle AOB + \angle BOD + \angle DOE + \angle EOF = 180^{\circ}$,即$40^{\circ} + 30^{\circ} + n^{\circ} + 30^{\circ} + n^{\circ} + \angle EOF = 180^{\circ}$,
∴$\angle EOF = (80 - 2n)^{\circ}$.
(2)根据题意,作图如答图所示.设$\angle COD = x^{\circ}$,则$\angle BOD = \angle BOC - \angle COD = (30 - x)^{\circ}$,
∵$OD$平分$\angle BOE$,
∴$\angle BOE = 2\angle BOD = (60 - 2x)^{\circ}$,
∴$\angle EOF = \angle BOF - \angle BOE = 140^{\circ} - (60 - 2x)^{\circ} = (80 + 2x)^{\circ}$,即$\angle EOF = 80^{\circ} + 2\angle COD$.
20.解:
(1)①$40^{\circ}$ [解析]
∵$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$,
∴$\angle BOC = \angle AOC - \angle AOB = 70^{\circ} - 40^{\circ} = 30^{\circ}$,
∵$OD$平分$\angle BOE$,$\angle COD = 20^{\circ}$,
∴$\angle DOE = \angle BOD = \angle BOC + \angle COD = 30^{\circ} + 20^{\circ} = 50^{\circ}$,
∵点O在直线AF上,
∴$\angle AOB + \angle BOD + \angle DOE + \angle EOF = 180^{\circ}$,即$40^{\circ} + 50^{\circ} + 50^{\circ} + \angle EOF = 180^{\circ}$,解得$\angle EOF = 40^{\circ}$.
②$(80 - 2n)^{\circ}$ [解析]
∵$\angle AOB = 40^{\circ}$,$\angle AOC = 70^{\circ}$,
∴$\angle BOC = \angle AOC - \angle AOB = 70^{\circ} - 40^{\circ} = 30^{\circ}$,
∵$OD$平分$\angle BOE$,$\angle COD = n^{\circ}$,
∴$\angle DOE = \angle BOD = \angle BOC + \angle COD = 30^{\circ} + n^{\circ}$,
∵点O在直线AF上,
∴$\angle AOB + \angle BOD + \angle DOE + \angle EOF = 180^{\circ}$,即$40^{\circ} + 30^{\circ} + n^{\circ} + 30^{\circ} + n^{\circ} + \angle EOF = 180^{\circ}$,
∴$\angle EOF = (80 - 2n)^{\circ}$.
(2)根据题意,作图如答图所示.设$\angle COD = x^{\circ}$,则$\angle BOD = \angle BOC - \angle COD = (30 - x)^{\circ}$,
∵$OD$平分$\angle BOE$,
∴$\angle BOE = 2\angle BOD = (60 - 2x)^{\circ}$,
∴$\angle EOF = \angle BOF - \angle BOE = 140^{\circ} - (60 - 2x)^{\circ} = (80 + 2x)^{\circ}$,即$\angle EOF = 80^{\circ} + 2\angle COD$.
查看更多完整答案,请扫码查看