2025年全优标准卷七年级数学上册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年全优标准卷七年级数学上册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
19. (7 分)如图,某酒店大堂的旋转门内部由三块宽为 $ 1.8\,m $、高为 $ 3\,m $ 的长方形玻璃隔板组成.
(1) 将此旋转门旋转一周,能形成的几何体是
A. 点动成线
B. 线动成面
C. 面动成体
(2) 求该旋转门旋转一周形成的几何体的体积. (边框及衔接处忽略不计,结果保留 $ \pi $)

(1) 将此旋转门旋转一周,能形成的几何体是
圆柱
,这能说明的事实是C
(填字母);A. 点动成线
B. 线动成面
C. 面动成体
(2) 求该旋转门旋转一周形成的几何体的体积. (边框及衔接处忽略不计,结果保留 $ \pi $)
答案:
19.解:
(1)$\because$旋转门的形状是长方形,$\therefore$旋转门旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体.
故答案为:圆柱 C.
(2)$\pi×1.8^2×3 = 9.72\pi(m^3)$.
故旋转门旋转一周形成的几何体的体积是$9.72\pi m^3$.
(1)$\because$旋转门的形状是长方形,$\therefore$旋转门旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体.
故答案为:圆柱 C.
(2)$\pi×1.8^2×3 = 9.72\pi(m^3)$.
故旋转门旋转一周形成的几何体的体积是$9.72\pi m^3$.
20. (8 分)如图,点 $ B,C $ 在线段 $ AD $ 上.
(1) 图 1 中共有
(2) 若 $ AB > CD $.
①如图 1,比较线段的长短: $ AC $
②如图 2,若 $ AD = 20 $, $ BC = 16 $, $ M $ 是 $ AB $ 的中点, $ N $ 是 $ CD $ 的中点,求线段 $ MN $ 的长度.

(1) 图 1 中共有
6
条线段;(2) 若 $ AB > CD $.
①如图 1,比较线段的长短: $ AC $
>
$ BD $;(填“$ > $”“$ < $”或“$ = $”)②如图 2,若 $ AD = 20 $, $ BC = 16 $, $ M $ 是 $ AB $ 的中点, $ N $ 是 $ CD $ 的中点,求线段 $ MN $ 的长度.
答案:
20.解:
(1)以A为端点的线段有AB,AC,AD,共3条,以B为端点的线段有BC,BD,共2条,以C为端点的线段有CD,共1条,故共有线段的条数为3 + 2 + 1 = 6.故答案为:6.
(2)①若AB > CD,则AB + BC > CD + BC,即AC > BD.
故答案为:>.
②$\because$AD = 20,BC = 16,$\therefore$AB + CD = AD - BC = 4.
$\because$M是AB的中点,N是CD的中点,$\therefore$BM = $\frac{1}{2}$AB,CN = $\frac{1}{2}$CD,$\therefore$BM + CN = $\frac{1}{2}$(AB + CD) = $\frac{1}{2}×4 = 2$,$\therefore$MN = BM + CN + BC = 2 + 16 = 18.
(1)以A为端点的线段有AB,AC,AD,共3条,以B为端点的线段有BC,BD,共2条,以C为端点的线段有CD,共1条,故共有线段的条数为3 + 2 + 1 = 6.故答案为:6.
(2)①若AB > CD,则AB + BC > CD + BC,即AC > BD.
故答案为:>.
②$\because$AD = 20,BC = 16,$\therefore$AB + CD = AD - BC = 4.
$\because$M是AB的中点,N是CD的中点,$\therefore$BM = $\frac{1}{2}$AB,CN = $\frac{1}{2}$CD,$\therefore$BM + CN = $\frac{1}{2}$(AB + CD) = $\frac{1}{2}×4 = 2$,$\therefore$MN = BM + CN + BC = 2 + 16 = 18.
21. (8 分)如图,将两块直角三角尺 $ AOB $ 与 $ COD $ 的直角顶点 $ O $ 重合在一起,其中直角边 $ OB $ 在 $ \angle COD $ 的内部.
(1) 若 $ \angle AOC = 30^{\circ} $,求 $ \angle AOD $ 和 $ \angle BOC $ 的度数;
(2) 若 $ \angle AOC = \alpha(0^{\circ} < \alpha < 90^{\circ}) $.
① $ \angle AOD $ 和 $ \angle BOC $ 有什么关系? 请说明理由;
②当 $ \angle AOD = 3\angle BOC $ 时,求 $ \alpha $ 的度数.

(1) 若 $ \angle AOC = 30^{\circ} $,求 $ \angle AOD $ 和 $ \angle BOC $ 的度数;
(2) 若 $ \angle AOC = \alpha(0^{\circ} < \alpha < 90^{\circ}) $.
① $ \angle AOD $ 和 $ \angle BOC $ 有什么关系? 请说明理由;
②当 $ \angle AOD = 3\angle BOC $ 时,求 $ \alpha $ 的度数.
答案:
21.解:
(1)由题意得$\angle AOB = \angle COD = 90°$.
$\because\angle AOC = 30°$,$\therefore\angle AOD = \angle AOC + \angle COD = 120°$,$\angle BOC = \angle AOB - \angle AOC = 60°$.
$\therefore\angle AOD$的度数为$120°$,$\angle BOC$的度数为$60°$.
(2)①$\angle AOD + \angle BOC = 180°$.
理由如下:$\because\angle AOB = \angle COD = 90°$,$\therefore\angle AOD + \angle BOC = \angle AOB + \angle BOD + \angle BOC = \angle AOB + \angle COD = 90° + 90° = 180°$.
②$\because\angle AOD = 3\angle BOC$,$\angle AOD + \angle BOC = 180°$,$\therefore4\angle BOC = 180°$,$\therefore\angle BOC = 45°$.
$\because\angle AOB = 90°$,$\therefore\angle AOC = \angle AOB - \angle BOC = 45°$,$\therefore\alpha$的度数为$45°$.
(1)由题意得$\angle AOB = \angle COD = 90°$.
$\because\angle AOC = 30°$,$\therefore\angle AOD = \angle AOC + \angle COD = 120°$,$\angle BOC = \angle AOB - \angle AOC = 60°$.
$\therefore\angle AOD$的度数为$120°$,$\angle BOC$的度数为$60°$.
(2)①$\angle AOD + \angle BOC = 180°$.
理由如下:$\because\angle AOB = \angle COD = 90°$,$\therefore\angle AOD + \angle BOC = \angle AOB + \angle BOD + \angle BOC = \angle AOB + \angle COD = 90° + 90° = 180°$.
②$\because\angle AOD = 3\angle BOC$,$\angle AOD + \angle BOC = 180°$,$\therefore4\angle BOC = 180°$,$\therefore\angle BOC = 45°$.
$\because\angle AOB = 90°$,$\therefore\angle AOC = \angle AOB - \angle BOC = 45°$,$\therefore\alpha$的度数为$45°$.
22. (9 分)已知 $ \angle AOB + \angle BOC = 180^{\circ} $, $ OD $ 平分 $ \angle BOC $.
(1) 如图 1,若 $ \angle AOB = 70^{\circ} $,则 $ \angle BOC = $
(2) 如图 2,若 $ \angle AOB = 150^{\circ} $,求 $ \angle AOD $ 的度数;
(3) 如图 3,若 $ \angle AOB = m^{\circ}(90 < m < 180) $, $ OE $ 平分 $ \angle AOB $,求 $ \angle DOE $ 的度数.

(1) 如图 1,若 $ \angle AOB = 70^{\circ} $,则 $ \angle BOC = $
110
$ ^{\circ} $, $ \angle AOD = $125
$ ^{\circ} $;(2) 如图 2,若 $ \angle AOB = 150^{\circ} $,求 $ \angle AOD $ 的度数;
(3) 如图 3,若 $ \angle AOB = m^{\circ}(90 < m < 180) $, $ OE $ 平分 $ \angle AOB $,求 $ \angle DOE $ 的度数.
答案:
22.解:
(1)$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 70°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 70° = 110°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}×110° = 55°$,$\therefore\angle AOD = \angle AOB + \angle BOD = 70° + 55° = 125°$.
故答案为:110 125.
(2)分两种情况讨论:
①当OC在OB的左侧时,如图1所示:
$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 150°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 150° = 30°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}×30° = 15°$,$\therefore\angle AOD = \angle AOB + \angle BOD = 150° + 15° = 165°$.
②当OC在OB的右侧时,如图2所示:
$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 150°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 150° = 30°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = 15°$,$\therefore\angle AOD = \angle AOB - \angle BOD = 150° - 15° = 135°$.
综上所述,$\angle AOD$的度数为$165°$或$135°$.
(3)$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = m°(90 < m < 180)$,$\therefore\angle BOC = 180° - \angle AOB = 180° - m°$.
$\because$OD平分$\angle BOC$,OE平分$\angle AOB$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}(180° - m°) = 90° - \frac{1}{2}m°$,$\angle BOE = \frac{1}{2}\angle AOB = \frac{1}{2}m°$,$\therefore\angle DOE = \angle BOD + \angle BOE = 90° - \frac{1}{2}m° + \frac{1}{2}m° = 90°$.
22.解:
(1)$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 70°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 70° = 110°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}×110° = 55°$,$\therefore\angle AOD = \angle AOB + \angle BOD = 70° + 55° = 125°$.
故答案为:110 125.
(2)分两种情况讨论:
①当OC在OB的左侧时,如图1所示:
$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 150°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 150° = 30°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}×30° = 15°$,$\therefore\angle AOD = \angle AOB + \angle BOD = 150° + 15° = 165°$.
②当OC在OB的右侧时,如图2所示:
$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = 150°$,$\therefore\angle BOC = 180° - \angle AOB = 180° - 150° = 30°$.
$\because$OD平分$\angle BOC$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = 15°$,$\therefore\angle AOD = \angle AOB - \angle BOD = 150° - 15° = 135°$.
综上所述,$\angle AOD$的度数为$165°$或$135°$.
(3)$\because\angle AOB + \angle BOC = 180°$,$\angle AOB = m°(90 < m < 180)$,$\therefore\angle BOC = 180° - \angle AOB = 180° - m°$.
$\because$OD平分$\angle BOC$,OE平分$\angle AOB$,$\therefore\angle BOD = \frac{1}{2}\angle BOC = \frac{1}{2}(180° - m°) = 90° - \frac{1}{2}m°$,$\angle BOE = \frac{1}{2}\angle AOB = \frac{1}{2}m°$,$\therefore\angle DOE = \angle BOD + \angle BOE = 90° - \frac{1}{2}m° + \frac{1}{2}m° = 90°$.
查看更多完整答案,请扫码查看