13. 计算:
(1)$\frac {x}{2}\sqrt {4x} + 6x\sqrt {\frac {x}{9}} - 2x^{2}\sqrt {\frac {1}{x}}$;
(2)$2b\sqrt {\frac {a}{b}} - (4a\sqrt {\frac {b}{a}} + \sqrt {9ab})(a > 0,b > 0)$;
(3)$(4\sqrt {32} + \frac {1}{5}\sqrt {50} - 4\sqrt {\frac {1}{2}})÷\sqrt {18}$;
(4)$\sqrt {48}÷\sqrt {3} - \sqrt {\frac {1}{2}}×\sqrt {12} + 3\sqrt {\frac {2}{3}}$。
(1)$\frac {x}{2}\sqrt {4x} + 6x\sqrt {\frac {x}{9}} - 2x^{2}\sqrt {\frac {1}{x}}$;
(2)$2b\sqrt {\frac {a}{b}} - (4a\sqrt {\frac {b}{a}} + \sqrt {9ab})(a > 0,b > 0)$;
(3)$(4\sqrt {32} + \frac {1}{5}\sqrt {50} - 4\sqrt {\frac {1}{2}})÷\sqrt {18}$;
(4)$\sqrt {48}÷\sqrt {3} - \sqrt {\frac {1}{2}}×\sqrt {12} + 3\sqrt {\frac {2}{3}}$。
答案:
(1) $x\sqrt{x}$;
(2) $-5\sqrt{ab}$;
(3) 5;
(4) 4.
(1) $x\sqrt{x}$;
(2) $-5\sqrt{ab}$;
(3) 5;
(4) 4.
14. 先化简,再求代数式的值:
(1)$(\frac {a + 2}{1 - a^{2}} - \frac {2}{a + 1})÷\frac {a}{1 - a}$,其中$a = \sqrt {3} - 1$;
(2)已知$a = 2 + \sqrt {3}$,$b = 2 - \sqrt {3}$,求$a^{2} + b^{2} - 3ab$的值。
(1)$(\frac {a + 2}{1 - a^{2}} - \frac {2}{a + 1})÷\frac {a}{1 - a}$,其中$a = \sqrt {3} - 1$;
(2)已知$a = 2 + \sqrt {3}$,$b = 2 - \sqrt {3}$,求$a^{2} + b^{2} - 3ab$的值。
答案:
解:
(1) 原式 $=(\frac{a + 2}{(1 - a)(1 + a)}-\frac{2}{a + 1})÷\frac{a}{1 - a}$
$=\frac{a + 2 - 2(1 - a)}{a(a + 1)}$
$=\frac{3}{a + 1}$.
$\because a=\sqrt{3}-1$,$\therefore$ 原式 $=\frac{3}{\sqrt{3}-1 + 1}=\sqrt{3}$.
(2) $\because a = 2+\sqrt{3}$,$b = 2-\sqrt{3}$,
$\therefore a + b = 4$,$ab=(2+\sqrt{3})(2-\sqrt{3})=4 - 3 = 1$.
$\therefore a^{2}+b^{2}-3ab=(a + b)^{2}-5ab = 4^{2}-5×1 = 11$.
(1) 原式 $=(\frac{a + 2}{(1 - a)(1 + a)}-\frac{2}{a + 1})÷\frac{a}{1 - a}$
$=\frac{a + 2 - 2(1 - a)}{a(a + 1)}$
$=\frac{3}{a + 1}$.
$\because a=\sqrt{3}-1$,$\therefore$ 原式 $=\frac{3}{\sqrt{3}-1 + 1}=\sqrt{3}$.
(2) $\because a = 2+\sqrt{3}$,$b = 2-\sqrt{3}$,
$\therefore a + b = 4$,$ab=(2+\sqrt{3})(2-\sqrt{3})=4 - 3 = 1$.
$\therefore a^{2}+b^{2}-3ab=(a + b)^{2}-5ab = 4^{2}-5×1 = 11$.
查看更多完整答案,请扫码查看