10. 设$a= 3-\sqrt {3},b= 2\sqrt {2}-2,c= \sqrt {7}-\sqrt {5}$,则 a,b,c 的大小关系是(
A.$a>b>c$
B.$a>c>b$
C.$c>b>a$
D.$b>c>a$
A
)A.$a>b>c$
B.$a>c>b$
C.$c>b>a$
D.$b>c>a$
答案:
A
11. 有下列二次根式:$4\sqrt {5a},\sqrt {2x^{3}},\sqrt {b},\sqrt {x^{2}+y^{2}},\sqrt {4y^{2}+4y+4},\sqrt {0.5x}$,其中最简二次根式有
3
个.
答案:
3
12. 计算:$(\sqrt {2})^{2}=$
2
;$\sqrt {(π-3.14)^{2}}=$$\pi - 3.14$
.
答案:
2 $\pi - 3.14$
13. 已知$\sqrt {x^{3}+3x^{2}}= -x\sqrt {x+3}$,则 x 的取值范围是
$-3 \leq x \leq 0$
.
答案:
$-3 \leq x \leq 0$
14. 若$\sqrt {x-3}+|y-2|= 0$,则$y^{x}$的值为
8
.
答案:
8
15. 若最简二次根式$\sqrt [a+1]{2a+5}与\sqrt {3b+4a}$是同类二次根式,则$a= $
1
,$b= $1
.
答案:
1 1
16. 若 a,b,c 满足$a^{2}+2b^{2}-2ac-2bc+2c^{2}-12b+36= 0$,则$\frac {b}{a}+\frac {c}{b}+\frac {a}{c}+abc$的值为
219
.
答案:
219
17. 对于任意不相等的两个实数 a,b,定义一种新运算※,规定$a※b= \frac {\sqrt {(a-b)^{2}}}{b-a}$,例如:$2※3= \frac {\sqrt {(2-3)^{2}}}{3-2}= \frac {\sqrt {(-1)^{2}}}{1}= 1$.那么$(-3)※(-2)= $
1
.
答案:
1
18. 计算:
(1)$(1-\sqrt {2})^{2}+\sqrt {16}÷\sqrt {2}$;
(2)$\sqrt {48}-\sqrt {54}÷2+(3-\sqrt {3})×(1+\frac {1}{\sqrt {3}})$;
(3)$\sqrt {1\frac {2}{3}}÷\sqrt {2\frac {1}{3}}×\sqrt {1\frac {2}{5}}$;
(4)$(1+\sqrt {2})^{2}×(1+\sqrt {3})^{2}×(1-\sqrt {2})^{2}×(1-\sqrt {3})^{2}$.
(1)$(1-\sqrt {2})^{2}+\sqrt {16}÷\sqrt {2}$;
(2)$\sqrt {48}-\sqrt {54}÷2+(3-\sqrt {3})×(1+\frac {1}{\sqrt {3}})$;
(3)$\sqrt {1\frac {2}{3}}÷\sqrt {2\frac {1}{3}}×\sqrt {1\frac {2}{5}}$;
(4)$(1+\sqrt {2})^{2}×(1+\sqrt {3})^{2}×(1-\sqrt {2})^{2}×(1-\sqrt {3})^{2}$.
答案:
(1)3;(2)$4\sqrt{3} - \frac{3}{2}\sqrt{6} + 2$;(3)1;(4)4.
查看更多完整答案,请扫码查看