19. 已知$x= \frac {\sqrt {3}+\sqrt {2}}{\sqrt {3}-\sqrt {2}},y= \frac {\sqrt {3}-\sqrt {2}}{\sqrt {3}+\sqrt {2}}$,求$\frac {x^{3}-xy^{2}}{x^{4}y+2x^{3}y^{2}+x^{2}y^{3}}$的值.
答案:
解:$\frac{x^3 - xy^2}{x^4y + 2x^3y^2 + x^2y^3}$
$= \frac{x(x + y)(x - y)}{x^2y(x + y)^2} = \frac{x - y}{xy(x + y)}$,
$x - y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 4\sqrt{6}$,
$x + y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 10$,
$xy = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} × \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 1$,
$\therefore$ 原式 $= \frac{4\sqrt{6}}{1 × 10} = \frac{2}{5}\sqrt{6}$。
$= \frac{x(x + y)(x - y)}{x^2y(x + y)^2} = \frac{x - y}{xy(x + y)}$,
$x - y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} - \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 4\sqrt{6}$,
$x + y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 10$,
$xy = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} × \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} = 1$,
$\therefore$ 原式 $= \frac{4\sqrt{6}}{1 × 10} = \frac{2}{5}\sqrt{6}$。
20. 当 a 取什么值时,代数式$\sqrt {2a+1}+1$的值最小?并求出这个最小值.
答案:
解:$\because \sqrt{2a + 1} \geq 0$,
$\therefore$ 当 $a = -\frac{1}{2}$ 时,$\sqrt{2a + 1}$ 有最小值,是 0.
则 $\sqrt{2a + 1} + 1$ 的最小值是 1.
$\therefore$ 当 $a = -\frac{1}{2}$ 时,$\sqrt{2a + 1}$ 有最小值,是 0.
则 $\sqrt{2a + 1} + 1$ 的最小值是 1.
21. 若 x,y 是实数,且$y= \sqrt {4x-1}+\sqrt {1-4x}+\frac {1}{3}$,求$(\frac {2}{3}x\sqrt {9x}+\sqrt {4xy})-(\sqrt {x^{3}}+\sqrt {25xy})$的值.
答案:
解:$\because y = \sqrt{4x - 1} + \sqrt{1 - 4x} + \frac{1}{3}$,且 $x$,$y$ 是实数,
$\therefore 4x - 1 \geq 0$ 且 $1 - 4x \geq 0$,解得 $x = \frac{1}{4}$。
$\therefore y = \frac{1}{3}$。
$\therefore$ 原式 $= 2x\sqrt{x} + 2\sqrt{xy} - x\sqrt{x} - 5\sqrt{xy}$
$= x\sqrt{x} - 3\sqrt{xy}$
$= \frac{1}{4}\sqrt{\frac{1}{4}} - 3\sqrt{\frac{1}{4} × \frac{1}{3}}$
$= \frac{1}{8} - \frac{\sqrt{3}}{2}$。
$\therefore 4x - 1 \geq 0$ 且 $1 - 4x \geq 0$,解得 $x = \frac{1}{4}$。
$\therefore y = \frac{1}{3}$。
$\therefore$ 原式 $= 2x\sqrt{x} + 2\sqrt{xy} - x\sqrt{x} - 5\sqrt{xy}$
$= x\sqrt{x} - 3\sqrt{xy}$
$= \frac{1}{4}\sqrt{\frac{1}{4}} - 3\sqrt{\frac{1}{4} × \frac{1}{3}}$
$= \frac{1}{8} - \frac{\sqrt{3}}{2}$。
查看更多完整答案,请扫码查看