15. 如图,直线$l_{1}的解析式为y = - 3x + 3且l_{1}与x轴交于点D$,直线$l_{2}经过A$,$B$两点,直线$l_{1}$,$l_{2}交于点C$.
(1)求点$D$的坐标;
(2)求直线$l_{2}$的解析式;
(3)求$\triangle ADC$的面积;
(4)在直线$l_{2}上存在异于点C的另一点P$,使得$\triangle ADP与\triangle ADC$的面积相等,请直接写出点$P$的坐标.

(1)求点$D$的坐标;
(2)求直线$l_{2}$的解析式;
(3)求$\triangle ADC$的面积;
(4)在直线$l_{2}上存在异于点C的另一点P$,使得$\triangle ADP与\triangle ADC$的面积相等,请直接写出点$P$的坐标.
答案:
解:
(1)
∵直线$l_1$与$x$轴交于点$D$,
$∴0 = - 3x + 3$,解得$x = 1$
∴点$D$的坐标为$(1,0)$
(2)设直线$l_2$的解析式为$y = kx + b$
把$A(4,0)$,$B(3,-\frac{3}{2})$代入,得
$\begin{cases}0 = 4k + b\\-\frac{3}{2} = 3k + b\end{cases}$,解得$\begin{cases}k = \frac{3}{2}\\b = - 6\end{cases}$
∴$y = \frac{3}{2}x - 6$
(3)联立$\begin{cases}y = \frac{3}{2}x - 6\\y = - 3x + 3\end{cases}$,解得$\begin{cases}x = 2\\y = - 3\end{cases}$
∴$C(2,-3)$
∴$S_{ADC} = \frac{1}{2}AD \cdot |y_c| = \frac{1}{2}×(4 - 1)×3 = \frac{9}{2}$
(4)$P(6,3)$
(1)
∵直线$l_1$与$x$轴交于点$D$,
$∴0 = - 3x + 3$,解得$x = 1$
∴点$D$的坐标为$(1,0)$
(2)设直线$l_2$的解析式为$y = kx + b$
把$A(4,0)$,$B(3,-\frac{3}{2})$代入,得
$\begin{cases}0 = 4k + b\\-\frac{3}{2} = 3k + b\end{cases}$,解得$\begin{cases}k = \frac{3}{2}\\b = - 6\end{cases}$
∴$y = \frac{3}{2}x - 6$
(3)联立$\begin{cases}y = \frac{3}{2}x - 6\\y = - 3x + 3\end{cases}$,解得$\begin{cases}x = 2\\y = - 3\end{cases}$
∴$C(2,-3)$
∴$S_{ADC} = \frac{1}{2}AD \cdot |y_c| = \frac{1}{2}×(4 - 1)×3 = \frac{9}{2}$
(4)$P(6,3)$
查看更多完整答案,请扫码查看