1.在下列空格处填上适当的式子.
(1)$\frac {a+b}{ab}=\frac {(
(1)$\frac {a+b}{ab}=\frac {(
a^{2}+ab
)}{a^{2}b}$; (2)$\frac {x}{x(x-y)}=\frac {1}{(x-y
)}$.
答案:
1.
(1)$a^{2}+ab$
(2)$x-y$
(1)$a^{2}+ab$
(2)$x-y$
2.下列等式中正确的是(
A.$\frac {a}{b}=\frac {2a}{2b}$
B.$\frac {a}{b}=\frac {a-1}{b-1}$
C.$\frac {a}{b}=\frac {a+1}{b+1}$
D.$\frac {a}{b}=\frac {a^{2}}{a^{2}}$
A
)A.$\frac {a}{b}=\frac {2a}{2b}$
B.$\frac {a}{b}=\frac {a-1}{b-1}$
C.$\frac {a}{b}=\frac {a+1}{b+1}$
D.$\frac {a}{b}=\frac {a^{2}}{a^{2}}$
答案:
2.A
3.不改变分式的值,使分式的分子,分母中不含负号.
(1)$\frac {-3}{2x}=$
(1)$\frac {-3}{2x}=$
$-\frac {3}{2x}$
; (2)$\frac {-x}{-2y}=$$\frac {x}{2y}$
.
答案:
3.
(1)$-\frac {3}{2x}$
(2)$\frac {x}{2y}$
(1)$-\frac {3}{2x}$
(2)$\frac {x}{2y}$
4.根据分式的基本性质,分式$\frac {-m}{m-n}$可变形为(
A.$\frac {m}{-m-n}$
B.$\frac {m}{m+n}$
C.$-\frac {m}{m-n}$
D.$\frac {m}{m-n}$
C
)A.$\frac {m}{-m-n}$
B.$\frac {m}{m+n}$
C.$-\frac {m}{m-n}$
D.$\frac {m}{m-n}$
答案:
4.C
5.把分式$\frac {x}{x+y}(x≠0,y≠0)$中分子,分母的$x,y$同时扩大2倍,分式的值(
A.扩大2倍
B.缩小2倍
C.改变为原来的$\frac {1}{4}$
D.不改变
D
)A.扩大2倍
B.缩小2倍
C.改变为原来的$\frac {1}{4}$
D.不改变
答案:
5.D
6.若$\frac {x}{y}=3$,则$-\frac {x}{y}$的值是(
A.3
B.-3
C.±3
D.9
A
)A.3
B.-3
C.±3
D.9
答案:
6.A
7.不改变分式的值,使下列分式的各项系数化为整数.
(1)$\frac {\frac {1}{6}a-\frac {1}{2}b}{\frac {1}{3}a+\frac {1}{9}b}$; (2)$\frac {x+\frac {2}{3}y}{\frac {1}{3}x+\frac {1}{2}y}$.
(1)$\frac {\frac {1}{6}a-\frac {1}{2}b}{\frac {1}{3}a+\frac {1}{9}b}$; (2)$\frac {x+\frac {2}{3}y}{\frac {1}{3}x+\frac {1}{2}y}$.
答案:
7.
(1)$\frac {3a-9b}{6a+2b}$
(2)$\frac {6x+4y}{2x+3y}$
(1)$\frac {3a-9b}{6a+2b}$
(2)$\frac {6x+4y}{2x+3y}$
8.不改变分式的值,把下列分式的分子与分母的最高次项的系数化为正数.
(1)$\frac {x+1}{-2x-1}$; (2)$\frac {2-x}{-x^{2}+3}$; (3)$\frac {-a-1}{a-1}$.
(1)$\frac {x+1}{-2x-1}$; (2)$\frac {2-x}{-x^{2}+3}$; (3)$\frac {-a-1}{a-1}$.
答案:
8.
(1)$-\frac {x+1}{2x+1}$
(2)$\frac {x-2}{x^{2}-3}$
(3)$-\frac {a+1}{a-1}$
(1)$-\frac {x+1}{2x+1}$
(2)$\frac {x-2}{x^{2}-3}$
(3)$-\frac {a+1}{a-1}$
查看更多完整答案,请扫码查看