1.下列添括号正确的是(
A.$a - b + c = a - (b + c)$
B.$a - b + c = a - (-b - c)$
C.$a - b + c = a - (b - c)$
D.$a - b + c = a + (b - c)$
C
)A.$a - b + c = a - (b + c)$
B.$a - b + c = a - (-b - c)$
C.$a - b + c = a - (b - c)$
D.$a - b + c = a + (b - c)$
答案:
1.C
2.填空.
(1)$m - 3n + 2a - b = m + 2a - $(
(2)$a - 2b - 4c + 5 = (a - 2b) + $(
(3)$(3 - x + y)(3 + x + y) = $[(
(4)$(b + c - a)(a - b + c) = [c - $(
(1)$m - 3n + 2a - b = m + 2a - $(
$3n + b$
);(2)$a - 2b - 4c + 5 = (a - 2b) + $(
$-4c + 5$
);(3)$(3 - x + y)(3 + x + y) = $[(
$3 + y$
)$ - x$][$(3 + y) + $$x$
];(4)$(b + c - a)(a - b + c) = [c - $(
$a - b$
)][$c + $($a - b$
)].
答案:
2.
(1)$3n + b$
(2)$-4c + 5$
(3)$3 + y$ $x$
(4)$a - b$ $a - b$
(1)$3n + b$
(2)$-4c + 5$
(3)$3 + y$ $x$
(4)$a - b$ $a - b$
3.将多项式$2x - 3xy + 4y^{2} - 5y$中的一次项放在前面带“+”号的括号中,二次项放在前面带“-”号的括号里,结果为
+(2x - 5y)-(3xy - 4y²)
.
答案:
3.$+(2x - 5y)-(3xy - 4y^{2})$
4.运用公式计算.
(1)$(x + 2y - 3)(x - 2y + 3)$;
(2)$(a + b - c)^{2}$.
(1)$(x + 2y - 3)(x - 2y + 3)$;
(2)$(a + b - c)^{2}$.
答案:
4.
(1)1 原式$=x^{2}-4y^{2}+12y - 9$;
(2)原式$=a^{2}+b^{2}+c^{2}+2ab - 2ac - 2bc$.
(1)1 原式$=x^{2}-4y^{2}+12y - 9$;
(2)原式$=a^{2}+b^{2}+c^{2}+2ab - 2ac - 2bc$.
5.$4a^{2} - kab + 9b^{2}$是完全平方式,则$k = $
$\pm 12$
.
答案:
5.$\pm 12$
6.若$a - b = \frac{1}{2}$,且$a^{2} - b^{2} = \frac{1}{4}$,则$a + b$的值为(
A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.1
D.2
B
)A.$-\frac{1}{2}$
B.$\frac{1}{2}$
C.1
D.2
答案:
6.B
7.若$a - b = 1,ab = 2$,则$(a + b)^{2}$的值为(
A.-9
B.9
C.$\pm 9$
D.3
B
)A.-9
B.9
C.$\pm 9$
D.3
答案:
7.B
8.已知$a + b = 5,ab = 3$,求$a^{2} + b^{2}$的值.
答案:
8.解:$a^{2}+b^{2}=(a + b)^{2}-2ab = 5^{2}-2×3 = 19$.
9.已知:$x + \frac{1}{x} = 3$,求$x^{2} + \frac{1}{x^{2}}$的值.
答案:
9.解:$x^{2}+\frac{1}{x^{2}}=(x+\frac{1}{x})^{2}-2 = 7$.
10.已知$(x + y)^{2} = 25,(x - y)^{2} = 9$,求$xy$的值.
答案:
10.解:$xy=\frac{(x + y)^{2}-(x - y)^{2}}{4}=\frac{25 - 9}{4}=4$.
查看更多完整答案,请扫码查看