1.下列多项式能用完全平方公式进行因式分解的是(
A.$x^{2}+1$
B.$x^{2}+2x-4$
C.$x^{2}-2x+1$
D.$x^{2}+x+1$
C
)A.$x^{2}+1$
B.$x^{2}+2x-4$
C.$x^{2}-2x+1$
D.$x^{2}+x+1$
答案:
1.C
2.下列二次三项式是完全平方式的是(
A.$x^{2}-8x-16$
B.$x^{2}+8x+16$
C.$x^{2}-4x-16$
D.$x^{2}+4x+16$
B
)A.$x^{2}-8x-16$
B.$x^{2}+8x+16$
C.$x^{2}-4x-16$
D.$x^{2}+4x+16$
答案:
2.B
3.若多项式$x^{2}-mx+9$能用完全平方公式分解因式,则$m$的值是(
A.3
B.6
C.$\pm 3$
D.$\pm 6$
D
)A.3
B.6
C.$\pm 3$
D.$\pm 6$
答案:
3.D
4.把$2xy-x^{2}-y^{2}$分解因式,结果正确的是(
A.$(x-y)^{2}$
B.$(-x-y)^{2}$
C.$-(x-y)^{2}$
D.$-(x+y)^{2}$
C
)A.$(x-y)^{2}$
B.$(-x-y)^{2}$
C.$-(x-y)^{2}$
D.$-(x+y)^{2}$
答案:
4.C
5.因式分解.
(1)$x^{2}-4x+4=$
(2)$8(a^{2}+1)-16a=$
(1)$x^{2}-4x+4=$
$(x - 2)^2$
;(2)$8(a^{2}+1)-16a=$
$8(a - 1)^2$
.
答案:
5.
(1)$(x - 2)^2$
(2)$8(a - 1)^2$
(1)$(x - 2)^2$
(2)$8(a - 1)^2$
6.若$a+b=4$,则$a^{2}+2ab+b^{2}$的值是(
A.16
B.8
C.4
D.2
A
)A.16
B.8
C.4
D.2
答案:
6.A
7.分解因式.
(1)$x^{2}-x+\frac {1}{4}$;
(2)$-9a^{2}+6ab-b^{2}$;
(3)$-8a^{2}b+2a^{3}+8ab^{2}$;
(4)$(m-n)^{2}-12(n-m)+36$;
(5)$4x^{2}-4x+1$;
(6)$-2xy-x^{2}-y^{2}$.
(1)$x^{2}-x+\frac {1}{4}$;
(2)$-9a^{2}+6ab-b^{2}$;
(3)$-8a^{2}b+2a^{3}+8ab^{2}$;
(4)$(m-n)^{2}-12(n-m)+36$;
(5)$4x^{2}-4x+1$;
(6)$-2xy-x^{2}-y^{2}$.
答案:
7.
(1)原式$=(x - \frac{1}{2})^2$
(2)原式$=-(3a - b)^2$
(3)原式$=2a(a - 2b)^2$
(4)原式$=(m - n + 6)^2$
(5)原式$=(2x - 1)^2$
(6)原式$=-(x + y)^2$
(1)原式$=(x - \frac{1}{2})^2$
(2)原式$=-(3a - b)^2$
(3)原式$=2a(a - 2b)^2$
(4)原式$=(m - n + 6)^2$
(5)原式$=(2x - 1)^2$
(6)原式$=-(x + y)^2$
8.简便运算.
(1)$961^{2}-2×961×959+959^{2}$;
(2)$800^{2}-1600×797+797^{2}$.
(1)$961^{2}-2×961×959+959^{2}$;
(2)$800^{2}-1600×797+797^{2}$.
答案:
8.
(1)$(961 - 959)^2 = 2^2 = 4$
(2)$(800 - 797)^2 = 3^2 = 9$
(1)$(961 - 959)^2 = 2^2 = 4$
(2)$(800 - 797)^2 = 3^2 = 9$
查看更多完整答案,请扫码查看