1. 若$x,y$互为相反数,$c,d$互为倒数,$m$的绝对值为9,则$(\frac{x + y}{3})^{2019} - (cd)^{2020} + m$的值为
(
A.8
B.9
C.10
D.8或 - 10
(
D
)A.8
B.9
C.10
D.8或 - 10
答案:
D
2. 定义一种新运算“$\otimes$”,规定:$a \otimes b = 2a - 3b$等式右边的运算就是加、减、乘、除四则运算,例如:$2 \otimes ( - 3) = 2 × 2 - 3 × ( - 3) = 4 + 9 = 13$,$1 \otimes 2 = 2 × 1 - 3 × 2 = 2 - 6 = - 4$.则$( - 1) \otimes [3 \otimes ( - 2)]$的值是
(
A.$- 2$
B.$- 18$
C.$- 28$
D.$- 38$
(
D
)A.$- 2$
B.$- 18$
C.$- 28$
D.$- 38$
答案:
D
3. 已知$x,y$为有理数,现规定一种新运算※,满足$x$※$y = xy + 1$.
(1)求$2$※$4$的值;
(2)求$(1$※$4)$※$( - 2)$的值;
(3)探索$a$※$(b + c)$与$a$※$b + a$※$c$的关系,并用等式把它们表达出来.
(1)求$2$※$4$的值;
(2)求$(1$※$4)$※$( - 2)$的值;
(3)探索$a$※$(b + c)$与$a$※$b + a$※$c$的关系,并用等式把它们表达出来.
答案:
(1)根据新运算的定义,有 $2 ※ 4 = 2 × 4 + 1 = 9$。
(2)首先计算内层的运算:$1 ※ 4 = 1 × 4 + 1 = 5$,
接着,将这个结果代入外层运算中:$(1 ※ 4) ※ (-2) = 5 ※ (-2) = 5 × (-2) + 1 = -9$。
(3)根据新运算的定义,有:
$a ※ (b + c) = a(b + c) + 1 = ab + ac + 1$,
$a ※ b + a ※ c = ab + 1 + ac + 1 = ab + ac + 2$,
由此可得关系式:$a ※ (b + c) + 1 = a ※ b + a ※ c$。
(1)根据新运算的定义,有 $2 ※ 4 = 2 × 4 + 1 = 9$。
(2)首先计算内层的运算:$1 ※ 4 = 1 × 4 + 1 = 5$,
接着,将这个结果代入外层运算中:$(1 ※ 4) ※ (-2) = 5 ※ (-2) = 5 × (-2) + 1 = -9$。
(3)根据新运算的定义,有:
$a ※ (b + c) = a(b + c) + 1 = ab + ac + 1$,
$a ※ b + a ※ c = ab + 1 + ac + 1 = ab + ac + 2$,
由此可得关系式:$a ※ (b + c) + 1 = a ※ b + a ※ c$。
4. 观察下列各式,回答问题:
第一个等式:$\frac{1}{1 × 2} = 1 - \frac{1}{2}$;第二个等式:$\frac{1}{2 × 3} = \frac{1}{2} - \frac{1}{3}$;第三个等式:$\frac{1}{3 × 4} = \frac{1}{3} - \frac{1}{4}$;
(1)猜想并写出:第$n$个等式为
(2)请直接写出下列各式的计算结果:
①$\frac{1}{1 × 2} + \frac{1}{2 × 3} + \frac{1}{3 × 4} + ·s + \frac{1}{2023 × 2024} =$
②$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} =$
(3)探究并计算:$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \frac{1}{99} + \frac{1}{143}$的值.
第一个等式:$\frac{1}{1 × 2} = 1 - \frac{1}{2}$;第二个等式:$\frac{1}{2 × 3} = \frac{1}{2} - \frac{1}{3}$;第三个等式:$\frac{1}{3 × 4} = \frac{1}{3} - \frac{1}{4}$;
(1)猜想并写出:第$n$个等式为
$\frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}$
$(n$为正整数);(2)请直接写出下列各式的计算结果:
①$\frac{1}{1 × 2} + \frac{1}{2 × 3} + \frac{1}{3 × 4} + ·s + \frac{1}{2023 × 2024} =$
$\frac{2023}{2024}$
;②$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} =$
$\frac{3}{8}$
;(3)探究并计算:$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \frac{1}{99} + \frac{1}{143}$的值.
答案:
(1)第$n$个等式为:
$\frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}$
(2)①
$\frac{1}{1 × 2} + \frac{1}{2 × 3} + \frac{1}{3 × 4} + ·s + \frac{1}{2023 × 2024}$
$ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{2023} - \frac{1}{2024}$
$ = 1 - \frac{1}{2024}$
$ = \frac{2023}{2024}$
②
$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56}$
$ = \frac{1}{2× 3} + \frac{1}{3× 4} + \frac{1}{4× 5} + \frac{1}{5× 6} + \frac{1}{6× 7} + \frac{1}{7× 8}$
$ = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ·s + \frac{1}{7} - \frac{1}{8}$
$ = \frac{1}{2} - \frac{1}{8}$
$ = \frac{3}{8}$
(3)
$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \frac{1}{99} + \frac{1}{143}$
$ = \frac{1}{1× 3} + \frac{1}{3× 5} + \frac{1}{5× 7} + \frac{1}{7× 9} + \frac{1}{9× 11} + \frac{1}{11× 13}$
$=\frac{1}{2}×(1 - \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13})$
$ = \frac{1}{2}×(1 - \frac{1}{13})$
$ = \frac{6}{13}$
$\frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}$
(2)①
$\frac{1}{1 × 2} + \frac{1}{2 × 3} + \frac{1}{3 × 4} + ·s + \frac{1}{2023 × 2024}$
$ = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ·s + \frac{1}{2023} - \frac{1}{2024}$
$ = 1 - \frac{1}{2024}$
$ = \frac{2023}{2024}$
②
$\frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56}$
$ = \frac{1}{2× 3} + \frac{1}{3× 4} + \frac{1}{4× 5} + \frac{1}{5× 6} + \frac{1}{6× 7} + \frac{1}{7× 8}$
$ = \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + ·s + \frac{1}{7} - \frac{1}{8}$
$ = \frac{1}{2} - \frac{1}{8}$
$ = \frac{3}{8}$
(3)
$\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{63} + \frac{1}{99} + \frac{1}{143}$
$ = \frac{1}{1× 3} + \frac{1}{3× 5} + \frac{1}{5× 7} + \frac{1}{7× 9} + \frac{1}{9× 11} + \frac{1}{11× 13}$
$=\frac{1}{2}×(1 - \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13})$
$ = \frac{1}{2}×(1 - \frac{1}{13})$
$ = \frac{6}{13}$
查看更多完整答案,请扫码查看