1. 计算$\frac{1}{6} × (-6) ÷ (-\frac{1}{6}) × 6$的结果是 (
A.6
B.36
C.$-1$
D.1
B
)A.6
B.36
C.$-1$
D.1
答案:
B
2. 对于有理数$x,y$,若$\frac{x}{y} < 0$,则$\frac{\vert xy \vert}{xy} + \frac{y}{\vert y \vert} + \frac{\vert x \vert}{x}$的值是 (
A.$-3$
B.$-1$
C.1
D.3
B
)A.$-3$
B.$-1$
C.1
D.3
答案:
B
3. 被除数是$-2\frac{2}{3}$,除数比被除数大$1\frac{1}{2}$,则商是
$\boxed{\dfrac{16}{7}}$
答案:
$\frac{16{/}7}$(或写为$2\frac{2}{7}$,根据题目要求填入形式)
由于要求内容为填空,答案为:$\boxed{\dfrac{16}{7}}$
由于要求内容为填空,答案为:$\boxed{\dfrac{16}{7}}$
4. 已知$\frac{a}{\vert a \vert} + \frac{b}{\vert b \vert} + \frac{c}{\vert c \vert} = -1$,则$\frac{abc}{\vert abc \vert}$的值为
1
答案:
$1$
5. 阅读下列材料:
计算:$\frac{1}{24} ÷ (\frac{1}{3} - \frac{1}{4} + \frac{1}{12})$.
解法一:原式$ = \frac{1}{24} ÷ \frac{1}{3} - \frac{1}{24} ÷ \frac{1}{4} + \frac{1}{24} ÷ \frac{1}{12} = \frac{1}{24} × 3 - \frac{1}{24} × 4 + \frac{1}{24} × 12 = \frac{11}{24}$.
解法二:原式$ = \frac{1}{24} ÷ (\frac{4}{12} - \frac{3}{12} + \frac{1}{12}) = \frac{1}{24} ÷ \frac{2}{12} = \frac{1}{24} × 6 = \frac{1}{4}$.
解法三:原式的倒数$= (\frac{1}{3} - \frac{1}{4} + \frac{1}{12}) ÷ \frac{1}{24} = (\frac{1}{3} - \frac{1}{4} + \frac{1}{12}) × 24 = \frac{1}{3} × 24 - \frac{1}{4} × 24 + \frac{1}{12} × 24 = 4$.
所以,原式$ = \frac{1}{4}$.
(1) 上述得到的结果不同,你认为解法
(2) 请你选择合适的解法计算:$(-\frac{1}{42}) ÷ (\frac{1}{6} - \frac{3}{14} + \frac{2}{3} - \frac{2}{7})$.
计算:$\frac{1}{24} ÷ (\frac{1}{3} - \frac{1}{4} + \frac{1}{12})$.
解法一:原式$ = \frac{1}{24} ÷ \frac{1}{3} - \frac{1}{24} ÷ \frac{1}{4} + \frac{1}{24} ÷ \frac{1}{12} = \frac{1}{24} × 3 - \frac{1}{24} × 4 + \frac{1}{24} × 12 = \frac{11}{24}$.
解法二:原式$ = \frac{1}{24} ÷ (\frac{4}{12} - \frac{3}{12} + \frac{1}{12}) = \frac{1}{24} ÷ \frac{2}{12} = \frac{1}{24} × 6 = \frac{1}{4}$.
解法三:原式的倒数$= (\frac{1}{3} - \frac{1}{4} + \frac{1}{12}) ÷ \frac{1}{24} = (\frac{1}{3} - \frac{1}{4} + \frac{1}{12}) × 24 = \frac{1}{3} × 24 - \frac{1}{4} × 24 + \frac{1}{12} × 24 = 4$.
所以,原式$ = \frac{1}{4}$.
(1) 上述得到的结果不同,你认为解法
一
是错误的;(2) 请你选择合适的解法计算:$(-\frac{1}{42}) ÷ (\frac{1}{6} - \frac{3}{14} + \frac{2}{3} - \frac{2}{7})$.
答案:
(1) 一;
(2) $-\frac{1}{14}$
(1) 一;
(2) $-\frac{1}{14}$
查看更多完整答案,请扫码查看