2025年1加1轻巧夺冠完美期末八年级数学上册北师大版辽宁专版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年1加1轻巧夺冠完美期末八年级数学上册北师大版辽宁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
14. (沈阳沈河期末)在平面直角坐标系 $x O y$ 中, 一次函数 $y=k x$ 和 $y=-x+3$ 的图象如图所示, 则二元一次方程组 $\left\{\begin{array}{l}k x=y, \\ -x+3=y\end{array}\right.$ 的解为 ______ .

答案:
$\begin{cases}x = 1, \\ y = 2\end{cases}$
15. (沈阳皇姑期末)如图, 在 $\triangle A B C$ 中, $A C=B C=5 \mathrm{~cm}, A B=8 \mathrm{~cm}, P$ 是线段 $A B$ 上一动点, 将 $\triangle B C P$ 沿直线 $C P$ 折叠, 使点 $B$ 落在点 $D$ 处, $C D$ 交 $A P$ 于点 $E$. 当 $\triangle A C E$ 是直角三角形时, $B P$ 的长为

$\frac{5}{2}$或1
$\mathrm{cm}$.
答案:
$\frac{5}{2}$或1 [解析]分两种情况:①当∠AEC = 90°时,如答图1,
∵∠AEC = ∠DEP = 90°,设BP = xcm,
∵AC = BC = 5cm,CE⊥AB,
∴AE = BE = $\frac{1}{2}$AB = 4(cm),
∴CE = $\sqrt{AC^2 - AE^2}=\sqrt{5^2 - 4^2}=3(cm)$,由折叠的性质知BC = CD = 5cm,BP = PD = xcm,
∴DE = CD - CE = 5 - 3 = 2(cm),在Rt△DEP中,DE² + PE² = DP²,即4 + (4 - x)² = x²,解得x = $\frac{5}{2}$,
∴BP = $\frac{5}{2}$cm;②当∠ACE = 90°时,如答图2,过点C作CH⊥AB于点H,
∴∠AHC = ∠CHE = 90°,
∵AC = BC = 5cm,CH⊥AB,
∴∠B = ∠A,AH = BH = $\frac{1}{2}$AB = 4(cm),
∴CH = $\sqrt{AC^2 - AH^2}=\sqrt{5^2 - 4^2}=3(cm)$,由折叠的性质知BC = CD = 5cm,∠BCP = ∠DCP,∠B = ∠D,
∴∠D = ∠A,
∵∠ECH + ∠HCA = 90°,∠HCA + ∠A = 90°,
∴∠ECH = ∠A,
∴∠ECH = ∠B,
∵∠CPH是△BCP的一个外角,
∴∠CPH = ∠B + ∠BCP,
∵∠PCH = ∠DCP + ∠ECH,
∴∠PCH = ∠CPH,
∴HC = HP = 3cm,
∴BP = BH - HP = 1(cm),综上所述,BP的长为$\frac{5}{2}$cm或1cm.
$\frac{5}{2}$或1 [解析]分两种情况:①当∠AEC = 90°时,如答图1,
∵∠AEC = ∠DEP = 90°,设BP = xcm,
∵AC = BC = 5cm,CE⊥AB,
∴AE = BE = $\frac{1}{2}$AB = 4(cm),
∴CE = $\sqrt{AC^2 - AE^2}=\sqrt{5^2 - 4^2}=3(cm)$,由折叠的性质知BC = CD = 5cm,BP = PD = xcm,
∴DE = CD - CE = 5 - 3 = 2(cm),在Rt△DEP中,DE² + PE² = DP²,即4 + (4 - x)² = x²,解得x = $\frac{5}{2}$,
∴BP = $\frac{5}{2}$cm;②当∠ACE = 90°时,如答图2,过点C作CH⊥AB于点H,
∴∠AHC = ∠CHE = 90°,
∵AC = BC = 5cm,CH⊥AB,
∴∠B = ∠A,AH = BH = $\frac{1}{2}$AB = 4(cm),
∴CH = $\sqrt{AC^2 - AH^2}=\sqrt{5^2 - 4^2}=3(cm)$,由折叠的性质知BC = CD = 5cm,∠BCP = ∠DCP,∠B = ∠D,
∴∠D = ∠A,
∵∠ECH + ∠HCA = 90°,∠HCA + ∠A = 90°,
∴∠ECH = ∠A,
∴∠ECH = ∠B,
∵∠CPH是△BCP的一个外角,
∴∠CPH = ∠B + ∠BCP,
∵∠PCH = ∠DCP + ∠ECH,
∴∠PCH = ∠CPH,
∴HC = HP = 3cm,
∴BP = BH - HP = 1(cm),综上所述,BP的长为$\frac{5}{2}$cm或1cm.
16. (每小题 5 分, 共 10 分)(沈阳沈北期末)
计算: (1) $\sqrt{12} ÷ \sqrt{3}-\sqrt{\frac{1}{2}} × \sqrt{12}$; (2) $\sqrt{3}+(-2 \sqrt{3})^2-\left(\sqrt{48}-\sqrt{\frac{1}{2}} × \sqrt{6}\right)$.
计算: (1) $\sqrt{12} ÷ \sqrt{3}-\sqrt{\frac{1}{2}} × \sqrt{12}$; (2) $\sqrt{3}+(-2 \sqrt{3})^2-\left(\sqrt{48}-\sqrt{\frac{1}{2}} × \sqrt{6}\right)$.
答案:
16.解:
(1)原式 = 2 - $\sqrt{6}$.
(2)原式 = $\sqrt{3} + 12 - (4\sqrt{3} - \frac{1}{\sqrt{2}}×6)=\sqrt{3} + 12 - 4\sqrt{3} + \sqrt{3}=12 - 2\sqrt{3}$.
(1)原式 = 2 - $\sqrt{6}$.
(2)原式 = $\sqrt{3} + 12 - (4\sqrt{3} - \frac{1}{\sqrt{2}}×6)=\sqrt{3} + 12 - 4\sqrt{3} + \sqrt{3}=12 - 2\sqrt{3}$.
查看更多完整答案,请扫码查看