2026年优选课堂必刷题高一数学全一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年优选课堂必刷题高一数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
5. (2025·江苏·高一假期作业)有下列说法:
①$\sqrt[3]{-125}=5$;②$16$的$4$次方根是$\pm2$;
③$\sqrt[4]{81}=\pm3$;④$\sqrt{(x + y)^{2}}=\vert x + y\vert$.
其中,正确的有______(填序号).
①$\sqrt[3]{-125}=5$;②$16$的$4$次方根是$\pm2$;
③$\sqrt[4]{81}=\pm3$;④$\sqrt{(x + y)^{2}}=\vert x + y\vert$.
其中,正确的有______(填序号).
答案:
5.解析:$n$为奇数时,负数的$n$次方根是一个负数,$\sqrt[3]{-125}=$
$-5$,故$①$错误;$16$的$4$次方根有两个,为$\pm2$,故$②$正确;因
为$\sqrt[4]{81}=3$,故$③$错误;因为$\sqrt{(x+y)^2}$是正数,故$\sqrt{(x+y)^2}$
$=|x+y|$,故$④$正确.故答案为:$②④$
答案:$②④$
$-5$,故$①$错误;$16$的$4$次方根有两个,为$\pm2$,故$②$正确;因
为$\sqrt[4]{81}=3$,故$③$错误;因为$\sqrt{(x+y)^2}$是正数,故$\sqrt{(x+y)^2}$
$=|x+y|$,故$④$正确.故答案为:$②④$
答案:$②④$
6. (多选题)(2025·江苏·高一假期作业)下列各式中一定成立的有( )
A.$(\frac{n}{m})^{7}=n^{7}m^{\frac{1}{7}}$
B.$\sqrt[12]{(-3)^{4}}=\sqrt[3]{3}$
C.$\sqrt[4]{x^{3}+y^{3}}=(x + y)^{\frac{3}{4}}$
D.$\sqrt{\sqrt[3]{9}}=\sqrt[3]{3}$
A.$(\frac{n}{m})^{7}=n^{7}m^{\frac{1}{7}}$
B.$\sqrt[12]{(-3)^{4}}=\sqrt[3]{3}$
C.$\sqrt[4]{x^{3}+y^{3}}=(x + y)^{\frac{3}{4}}$
D.$\sqrt{\sqrt[3]{9}}=\sqrt[3]{3}$
答案:
6.BD $\left(\frac{n}{m}\right)^7=n^7m^{-7}$,A错误;$\sqrt[12]{(-3)^4}=3^\frac{4}{12}=\sqrt[3]{3}$,B正确;
$\sqrt[3]{x^3+y^3}=(x^3+y^3)^\frac{1}{3}$,C错误;$\sqrt[3]{9}=({9^\frac{1}{2}})^\frac{1}{3}=({9^\frac{1}{3}})^\frac{1}{2}=\sqrt[3]{3}$,D正确.故选:BD.
$\sqrt[3]{x^3+y^3}=(x^3+y^3)^\frac{1}{3}$,C错误;$\sqrt[3]{9}=({9^\frac{1}{2}})^\frac{1}{3}=({9^\frac{1}{3}})^\frac{1}{2}=\sqrt[3]{3}$,D正确.故选:BD.
7. (2025·高一课时练习)根式$\sqrt{\frac{1}{\sqrt{a}}\sqrt{\frac{1}{a}}}$的分数指数幂的形式为( )
A.$a^{-\frac{4}{3}}$
B.$a^{\frac{4}{3}}$
C.$a^{\frac{3}{4}}$
D.$a^{-\frac{3}{8}}$
A.$a^{-\frac{4}{3}}$
B.$a^{\frac{4}{3}}$
C.$a^{\frac{3}{4}}$
D.$a^{-\frac{3}{8}}$
答案:
7.D $\sqrt{\frac{1}{\sqrt{a}}\sqrt{\frac{1}{a}}}=\sqrt{a^{-\frac{1}{2}}·\left(a^{-\frac{1}{2}}\right)^\frac{1}{2}}=\sqrt{a^{-\frac{1}{2}}· a^{-\frac{1}{4}}}=$
$\sqrt{a^{-\frac{3}{4}}}=a^{-\frac{3}{8}}$.故选D.
$\sqrt{a^{-\frac{3}{4}}}=a^{-\frac{3}{8}}$.故选D.
8. (2025·河南郑州第七中学质量检测)已知$a + a^{-1}=3$,下列各式中正确的个数是( )
①$a^{2}+a^{-2}=7$;②$a^{3}+a^{-3}=18$;③$a^{\frac{1}{2}}+a^{-\frac{1}{2}}=\pm\sqrt{5}$;④$a\sqrt{a}+\frac{1}{a\sqrt{a}}=2\sqrt{5}$;
A.$1$
B.$2$
C.$3$
D.$4$
①$a^{2}+a^{-2}=7$;②$a^{3}+a^{-3}=18$;③$a^{\frac{1}{2}}+a^{-\frac{1}{2}}=\pm\sqrt{5}$;④$a\sqrt{a}+\frac{1}{a\sqrt{a}}=2\sqrt{5}$;
A.$1$
B.$2$
C.$3$
D.$4$
答案:
8.C $①a^2+a^{-2}=(a+a^{-1})^2-2=9-2=7$,正确;$②a^3+a^{-3}$
$=(a+a^{-1})(a^2-1+a^{-2})=3×(7-1)=18$,正确;$③$因为$a+a^{-1}=3$可知$a>0$,$a^\frac{1}{2}+a^{-\frac{1}{2}}>0$,$(a^\frac{1}{2}+a^{-\frac{1}{2}})^2=a+2+a^{-1}=5$,所以$a^\frac{1}{2}+a^{-\frac{1}{2}}=\sqrt{5}$,故错误;$④a\sqrt{a}+\frac{1}{a\sqrt{a}}=a^\frac{3}{2}+a^{-\frac{3}{2}}=(a^\frac{1}{2}+a^{-\frac{1}{2}})(a-1+a^{-1})=\sqrt{5}(a-1+a^{-1})=2\sqrt{5}$,正
确.故选:C.
$=(a+a^{-1})(a^2-1+a^{-2})=3×(7-1)=18$,正确;$③$因为$a+a^{-1}=3$可知$a>0$,$a^\frac{1}{2}+a^{-\frac{1}{2}}>0$,$(a^\frac{1}{2}+a^{-\frac{1}{2}})^2=a+2+a^{-1}=5$,所以$a^\frac{1}{2}+a^{-\frac{1}{2}}=\sqrt{5}$,故错误;$④a\sqrt{a}+\frac{1}{a\sqrt{a}}=a^\frac{3}{2}+a^{-\frac{3}{2}}=(a^\frac{1}{2}+a^{-\frac{1}{2}})(a-1+a^{-1})=\sqrt{5}(a-1+a^{-1})=2\sqrt{5}$,正
确.故选:C.
9. (2025·全国·专题练习)化简$4a^{\frac{2}{3}}b^{-\frac{1}{3}}÷(-\frac{2}{3}a^{-\frac{1}{3}}b^{\frac{2}{3}})$的结果为( )
A.$-\frac{2a}{3b}$
B.$-\frac{8a}{b}$
C.$-\frac{6a}{b}$
D.$6ab$
A.$-\frac{2a}{3b}$
B.$-\frac{8a}{b}$
C.$-\frac{6a}{b}$
D.$6ab$
答案:
9.C $4a^\frac{2}{3}b^{-\frac{1}{3}}÷\left(-\frac{2}{3}a^{-\frac{1}{3}}b^\frac{2}{3}\right)=\left[4÷\left(-\frac{2}{3}\right)\right]a^{\frac{2}{3}-\left(-\frac{1}{3}\right)}b^{-\frac{1}{3}-\frac{2}{3}}=-6ab^{-1}=-\frac{6a}{b}$.故选:C.
10. (2025·全国·高一假期作业)已知$m^{\frac{1}{2}}+m^{-\frac{1}{2}}=4$,则$\frac{m^{\frac{3}{2}}-m^{-\frac{3}{2}}}{m^{\frac{1}{2}}-m^{-\frac{1}{2}}}$的值是( )
A.$15$
B.$12$
C.$16$
D.$25$
A.$15$
B.$12$
C.$16$
D.$25$
答案:
10.A 因为$m^\frac{3}{2}+m^{-\frac{3}{2}}=4$,所以$m+m^{-1}=(m^\frac{1}{2}+m^\frac{1}{2})^2-2=16-2=14$,又由立方差公式,$\frac{m^\frac{3}{2}-m^{-\frac{3}{2}}}{m^\frac{1}{2}-m^{-\frac{1}{2}}}=\frac{(m^\frac{1}{2}-m^{-\frac{1}{2}})(m+1+m^{-1})}{m^\frac{1}{2}-m^{-\frac{1}{2}}}=m+1+m^{-1}=15$.
故选:A.
故选:A.
11. (2025·全国·专题练习)已知$x^{\frac{1}{2}}+x^{-\frac{1}{2}}=3$,则$\frac{x^{2}+x^{-2}-2}{x^{\frac{3}{2}}+x^{-\frac{3}{2}}-3}=$______.
答案:
11.解析:解:因为$x^\frac{1}{2}+x^{-\frac{1}{2}}=3$,所以$\left(x^\frac{1}{2}+x^{-\frac{1}{2}}\right)^2=x+x^{-1}+2=9$,即$x+x^{-1}=7$,所以$(x+x^{-1})^2=x^2+x^{-2}+2=49$,
即$x^2+x^{-2}=47$,所以$\frac{x^2+x^{-2}-2}{x^\frac{1}{2}+x^{-\frac{3}{2}}-3}=$
$\frac{47-2}{3×6-3}=\frac{45}{15}=3$.故答案
为:3.
答案3
即$x^2+x^{-2}=47$,所以$\frac{x^2+x^{-2}-2}{x^\frac{1}{2}+x^{-\frac{3}{2}}-3}=$
$\frac{47-2}{3×6-3}=\frac{45}{15}=3$.故答案
为:3.
答案3
12. (2025·全国·专题练习)(1)计算$0.027^{-\frac{1}{3}}-(-\frac{1}{6})^{-2}+81^{0.75}+(\frac{1}{9})^{0}-3^{-1}$;
(2)若$x^{\frac{1}{2}}+x^{-\frac{1}{2}}=\sqrt{6}$,求$x^{2}+x^{-2}$的值.
(2)若$x^{\frac{1}{2}}+x^{-\frac{1}{2}}=\sqrt{6}$,求$x^{2}+x^{-2}$的值.
答案:
12.解:$(1)0.027^{-\frac{1}{3}}-\left(-\frac{1}{6}\right)^{-2}+81^{0.75}+\left(\frac{1}{9}\right)^0-3^{-1}=$
$3^{-1}-36+3^3+1-\frac{1}{3}=\frac{10}{3}-36+27+1-\frac{1}{3}=-5$.
(2)若$x^\frac{1}{2}+x^{-\frac{1}{2}}=\sqrt{6}$,$\therefore x+\frac{1}{x}+2=6$,$x+\frac{1}{x}=4$,$\therefore x^2+$
$x^{-2}=16$,$\therefore x^2+x^{-2}=14$.
$3^{-1}-36+3^3+1-\frac{1}{3}=\frac{10}{3}-36+27+1-\frac{1}{3}=-5$.
(2)若$x^\frac{1}{2}+x^{-\frac{1}{2}}=\sqrt{6}$,$\therefore x+\frac{1}{x}+2=6$,$x+\frac{1}{x}=4$,$\therefore x^2+$
$x^{-2}=16$,$\therefore x^2+x^{-2}=14$.
13. (2025·江苏·高一假期作业)计算:
(1)$(-\frac{1}{27})^{-\frac{1}{3}}+0.002^{-\frac{1}{2}}-10(\sqrt{5}-2)^{-1}+\pi^{0}$;
(2)$8^{\frac{2}{3}}-(\frac{1}{2})^{-2}+(\frac{16}{81})^{-\frac{3}{4}}-(\sqrt{2}-1)^{0}$
(1)$(-\frac{1}{27})^{-\frac{1}{3}}+0.002^{-\frac{1}{2}}-10(\sqrt{5}-2)^{-1}+\pi^{0}$;
(2)$8^{\frac{2}{3}}-(\frac{1}{2})^{-2}+(\frac{16}{81})^{-\frac{3}{4}}-(\sqrt{2}-1)^{0}$
答案:
13.解:$(1)\left(-\frac{1}{27}\right)^{-\frac{1}{3}}+0.002^{-\frac{1}{2}}-10(\sqrt{5}-2)^{-1}+\pi^0=-3+$
$10\sqrt{5}-10\sqrt{5}-20+1=-22$;
(2)$8^\frac{2}{3}-\left(\frac{1}{2}\right)^{-2}+\left(\frac{16}{81}\right)^{-\frac{3}{4}}-(\sqrt{2}-1)^0=2^{3×\frac{2}{3}}-4+$
$\left(\frac{2}{3}\right)^{4×\left(-\frac{4}{3}\right)}-1=4-4+\frac{27}{8}-1=\frac{19}{8}$.
$10\sqrt{5}-10\sqrt{5}-20+1=-22$;
(2)$8^\frac{2}{3}-\left(\frac{1}{2}\right)^{-2}+\left(\frac{16}{81}\right)^{-\frac{3}{4}}-(\sqrt{2}-1)^0=2^{3×\frac{2}{3}}-4+$
$\left(\frac{2}{3}\right)^{4×\left(-\frac{4}{3}\right)}-1=4-4+\frac{27}{8}-1=\frac{19}{8}$.
14. (2025·全国·专题练习)(1)计算:$(\frac{1}{25})^{-\frac{1}{2}}×(\frac{64}{125})^{\frac{1}{3}}+(\sqrt{2}×\sqrt[4]{6})^{4}÷(\sqrt{\sqrt[4]{2}})^{\frac{\sqrt{2}}{2}}$;
(2)已知$a,b(a>b)$是方程$x^{2}-5x + 5 = 0$的两根,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$的值.
(2)已知$a,b(a>b)$是方程$x^{2}-5x + 5 = 0$的两根,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$的值.
答案:
14.解:
(1)原式$=25^\frac{1}{2}×\frac{4}{5}+\left(2^\frac{1}{2}×6^\frac{1}{4}\right)÷\left(4^\frac{\sqrt{2}}{2}\right)^\frac{1}{2}=5×\frac{4}{5}+$ $4×6÷4^\frac{1}{2}=4+12=16$;
(2)由题意$a+b=5$,$ab=5$,又$(a-b)^2=(a+b)^2-4ab=5^2-4×5=5$,而$a>b$,所以$a-b=\sqrt{5}$,所以$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=$ $\frac{(\sqrt{a}-\sqrt{b})^2+(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}=\frac{a-2\sqrt{ab}+b+a+2\sqrt{ab}+b}{a-b}=$
$\frac{2(a+b)}{\sqrt{5}}=\frac{10}{a-b}=2\sqrt{5}$.
(1)原式$=25^\frac{1}{2}×\frac{4}{5}+\left(2^\frac{1}{2}×6^\frac{1}{4}\right)÷\left(4^\frac{\sqrt{2}}{2}\right)^\frac{1}{2}=5×\frac{4}{5}+$ $4×6÷4^\frac{1}{2}=4+12=16$;
(2)由题意$a+b=5$,$ab=5$,又$(a-b)^2=(a+b)^2-4ab=5^2-4×5=5$,而$a>b$,所以$a-b=\sqrt{5}$,所以$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}=$ $\frac{(\sqrt{a}-\sqrt{b})^2+(\sqrt{a}+\sqrt{b})^2}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}=\frac{a-2\sqrt{ab}+b+a+2\sqrt{ab}+b}{a-b}=$
$\frac{2(a+b)}{\sqrt{5}}=\frac{10}{a-b}=2\sqrt{5}$.
查看更多完整答案,请扫码查看