2026年优选课堂必刷题高一数学全一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年优选课堂必刷题高一数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
12. (2025·全国·专题练习)已知$2x + 3y = 6(x>0,y>0)$,则$xy$的最大值是______.
答案:
12.解析:因为$x > 0$,$y > 0$,所以$xy = \frac{1}{6} · 2x · 3y \leqslant \frac{1}{6}(\frac{2x + 3y}{2})^{2} = \frac{3}{2}$,当且仅当$2x = 3y = 3$,即$x = \frac{3}{2}$,$y = 1$时等号成立,故$xy$的最大值是$\frac{3}{2}$.故答案为:$\frac{3}{2}$
答案:$\frac{3}{2}$
答案:$\frac{3}{2}$
13. (2025·高一单元测试)若$x<1$,则$\frac{x^{2}-2x + 3}{x - 1}$的最大值是______.
答案:
13.解析:因为$\frac{x^{2} - 2x + 3}{x - 1} = \frac{(x - 1)^{2} + 2}{x - 1} = x - 1 + \frac{2}{x - 1}$,因为$x < 1$,所以$x - 1 < 0$,所以$- (x - 1) + \frac{2}{- (x - 1)} \geqslant 2\sqrt{- (x - 1) · \frac{2}{- (x - 1)}} = 2\sqrt{2}$,当且仅当$- (x - 1) = \frac{2}{- (x - 1)}$即$x = 1 - \sqrt{2}$时取得等号,所以$(x - 1) + \frac{2}{x - 1} \leqslant - 2\sqrt{2}$,所以当$x = 1 - \sqrt{2}$时$\frac{x^{2} - 2x + 3}{x - 1}$的最大值是$- 2\sqrt{2}$,故答案为:$- 2\sqrt{2}$.
答案:$- 2\sqrt{2}$
答案:$- 2\sqrt{2}$
14. (2025·全国·对口高考)(1)已知$x>0$,求函数$y=\frac{x}{x^{2}+x + 4}$的最大值.
(2)已知$x<\frac{5}{4}$,求函数$y=\frac{16x^{2}-28x + 11}{4x - 5}$的最大值.
(2)已知$x<\frac{5}{4}$,求函数$y=\frac{16x^{2}-28x + 11}{4x - 5}$的最大值.
答案:
14.解:
(1)$y = \frac{x}{x^{2} + x + 4}$可化为$y = \frac{1}{x + 1 + \frac{4}{x}}$,由基本不等式可得,$x + \frac{4}{x} \geqslant 2\sqrt{x · \frac{4}{x}} = 4$,当且仅当$x = \frac{4}{x}$时等号成立,
所以$y = \frac{1}{x + 1 + \frac{4}{x}}$,当且仅当$x = 2$时等号成立,所以
当$x = 2$时,函数$y = \frac{x}{x^{2} + x + 4}$取最大值,最大值为$\frac{1}{5}$;
(2)设$4x - 5 = t$,则$x = \frac{t + 5}{4}$,因为$x < \frac{5}{4}$,所以$t < 0$,所以$y = \frac{16x^{2} - 28x + 11}{4x - 5}$
$= \frac{16 × (\frac{t + 5}{4})^{2} - 28 × \frac{t + 5}{4} + 11}{t}$
$= \frac{t^{2} + 3t + 1}{t + 3 + \frac{1}{t}} = t + 3 + \frac{1}{t} = - \left[ (-t) + \left( - \frac{1}{t} \right) \right] + 3 \leqslant - 2\sqrt{(-t) · \left( - \frac{1}{t} \right)} + 3 = 1$,当且仅当$t = - 1$时,等号成立,所以当$x = 1$时,函数$y = \frac{16x^{2} - 28x + 11}{4x - 5}$取最大值,最大值为$1$.
(1)$y = \frac{x}{x^{2} + x + 4}$可化为$y = \frac{1}{x + 1 + \frac{4}{x}}$,由基本不等式可得,$x + \frac{4}{x} \geqslant 2\sqrt{x · \frac{4}{x}} = 4$,当且仅当$x = \frac{4}{x}$时等号成立,
所以$y = \frac{1}{x + 1 + \frac{4}{x}}$,当且仅当$x = 2$时等号成立,所以
当$x = 2$时,函数$y = \frac{x}{x^{2} + x + 4}$取最大值,最大值为$\frac{1}{5}$;
(2)设$4x - 5 = t$,则$x = \frac{t + 5}{4}$,因为$x < \frac{5}{4}$,所以$t < 0$,所以$y = \frac{16x^{2} - 28x + 11}{4x - 5}$
$= \frac{16 × (\frac{t + 5}{4})^{2} - 28 × \frac{t + 5}{4} + 11}{t}$
$= \frac{t^{2} + 3t + 1}{t + 3 + \frac{1}{t}} = t + 3 + \frac{1}{t} = - \left[ (-t) + \left( - \frac{1}{t} \right) \right] + 3 \leqslant - 2\sqrt{(-t) · \left( - \frac{1}{t} \right)} + 3 = 1$,当且仅当$t = - 1$时,等号成立,所以当$x = 1$时,函数$y = \frac{16x^{2} - 28x + 11}{4x - 5}$取最大值,最大值为$1$.
[例] (2025·上海普陀·高一质量检测)下列不等式中等号可以取到的是( )
A.$\sqrt{x^{2}+5}+\frac{1}{\sqrt{x^{2}+5}}\geqslant 2$
B.$x^{2}+2+\frac{1}{x^{2}+2}\geqslant 2$
C.$x^{2}+\frac{1}{x^{2}}\geqslant 2$
D.$|x|+3+\frac{1}{|x|+3}\geqslant 2$
A.$\sqrt{x^{2}+5}+\frac{1}{\sqrt{x^{2}+5}}\geqslant 2$
B.$x^{2}+2+\frac{1}{x^{2}+2}\geqslant 2$
C.$x^{2}+\frac{1}{x^{2}}\geqslant 2$
D.$|x|+3+\frac{1}{|x|+3}\geqslant 2$
答案:
[解析] 对于A,因为$\sqrt{x^{2}+5}>0$,所以$\sqrt{x^{2}+5}+\frac{1}{\sqrt{x^{2}+5}}\geqslant 2\sqrt{\sqrt{x^{2}+5}·\frac{1}{\sqrt{x^{2}+5}}}=2$,当且仅当$\sqrt{x^{2}+5}=\frac{1}{\sqrt{x^{2}+5}}$,即$x^{2}=-4$,故等号不成立,故A不符合;对于B,因为$x^{2}+2>0$,所以$x^{2}+2+\frac{1}{x^{2}+2}\geqslant 2\sqrt{(x^{2}+2)·\frac{1}{x^{2}+2}}=2$,当且仅当$x^{2}+2=\frac{1}{x^{2}+2}$,即$x^{2}=-1$,故等号不成立,故B不符合;对于C,因为$x^{2}>0$,所以$x^{2}+\frac{1}{x^{2}}\geqslant 2\sqrt{x^{2}·\frac{1}{x^{2}}}=2$,当且仅当$x^{2}=\frac{1}{x^{2}}$,即$x=\pm 1$时取等号,故C符合;对于D,因为$|x|+3>0$,所以$|x|+3+\frac{1}{|x|+3}\geqslant 2\sqrt{(|x|+3)·\frac{1}{|x|+3}}=2$,当且仅当$|x|+3=\frac{1}{|x|+3}$,即$|x|=-2$,故等号不成立,故D不符合.故选:C.
[例] (多选题)(2025·大庆实验中学校考模拟预测)下列结论中,正确的是( )
A.若$xy>0$,$2x + y = xy$,则$2x + y$的最小值为8
B.若$x<-3$,则函数$y = x+\frac{1}{x + 3}$的最小值为$-1$
C.已知正数$a,b$满足$ab = a + b$,则$\frac{1}{a - 1}+\frac{1}{b - 1}\geqslant 2$
D.已知$a>0,b>0$,且$a^{2}+b = 1$,则$a+\sqrt{b}\leqslant \sqrt{2}$
A.若$xy>0$,$2x + y = xy$,则$2x + y$的最小值为8
B.若$x<-3$,则函数$y = x+\frac{1}{x + 3}$的最小值为$-1$
C.已知正数$a,b$满足$ab = a + b$,则$\frac{1}{a - 1}+\frac{1}{b - 1}\geqslant 2$
D.已知$a>0,b>0$,且$a^{2}+b = 1$,则$a+\sqrt{b}\leqslant \sqrt{2}$
答案:
[解析] 对于A,因为$xy>0$,$2x + y = xy$,所以$x>0,y>0$,且$\frac{1}{x}+\frac{2}{y}=1$,则$2x + y=(2x + y)(\frac{1}{x}+\frac{2}{y})=4+\frac{y}{x}+\frac{4x}{y}\geqslant 4+2\sqrt{\frac{y}{x}·\frac{4x}{y}}=8$,当且仅当$\frac{y}{x}=\frac{4x}{y}$,即$y = 2x = 4$时取等号,所以$2x + y$的最小值为8,故A正确;对于B,若$x<-3$,则$x + 3<0$,则$-x - 3>0$,则$y = x+\frac{1}{x + 3}=-[(-x - 3)+\frac{1}{(-x - 3)}]-3\leqslant -2\sqrt{(-x - 3)·\frac{1}{(-x - 3)}}-3=-5$,当且仅当$(-x - 3)=\frac{1}{(-x - 3)}$,即$x=-4$时取等号,所以函数$y = x+\frac{1}{x + 3}$的最大值为$-5$,故B错误.对于C,因为正数$a,b$满足$ab = a + b$,所以$(a - 1)(b - 1)=1$,且$a>1,b>1$,所以$\frac{1}{a - 1}+\frac{1}{b - 1}\geqslant 2\sqrt{\frac{1}{(a - 1)(b - 1)}}=2$,当且仅当$a = b = 2$时等号成立,故C正确.对于D,$\because a>0,b>0$,且$a^{2}+b = 1$,$\therefore 1 = a^{2}+b\geqslant 2a\sqrt{b}$,$\therefore 2(a^{2}+b)\geqslant (a+\sqrt{b})^{2}$,$\therefore (a+\sqrt{b})^{2}\leqslant 2$,当且仅当$a=\sqrt{b}=\frac{\sqrt{2}}{2}$取等号,故D正确.故选:ACD.
查看更多完整答案,请扫码查看