2026年优选课堂必刷题高一数学全一册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年优选课堂必刷题高一数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
[例] (2025·全国·对口高考)解关于$x$的不等式:
(1)$ax^{2}-2(a + 1)x + 4 < 0$
(2)$\frac {(a - 1)x + (2 - a)}{x - 2} > 0$
(1)$ax^{2}-2(a + 1)x + 4 < 0$
(2)$\frac {(a - 1)x + (2 - a)}{x - 2} > 0$
答案:
[解] (1)$ax^{2}-2(a + 1)x + 4 < 0 \Rightarrow (ax - 2)(x - 2) < 0$。若$a = 0$,$(ax - 2)(x - 2) = -2(x - 2) < 0$,解不等式得$x > 2$;若$a \neq 0$,则不等式可化为:$ax^{2}-2(a + 1)x + 4 < 0 \Rightarrow (ax - 2)(x - 2) = a(x - \frac {2}{a})(x - 2) < 0$。
①若$a < 0$,则$\frac {2}{a} < 2$,解不等式得$x < \frac {2}{a}$或$x > 2$;②若$a \in (0,1)$,则$\frac {2}{a} > 2$,解不等式得$2 < x < \frac {2}{a}$;③若$a = 1$,则$(x - 2)^{2} < 0$无解,即$x \in \varnothing$;④若$a > 1$,则$\frac {2}{a} < 2$,解不等式得$2 > x > \frac {2}{a}$。综上所述:当$a = 0$时,不等式的解集为$(2, +\infty)$;当$a < 0$时,不等式的解集为$(-\infty, \frac {2}{a}) \cup (2, +\infty)$;当$0 < a < 1$时,不等式的解集为$(2, \frac {2}{a})$;当$a = 1$时,不等式的解集为$\varnothing$;当$a > 1$时,不等式的解集为$(\frac {2}{a}, 2)$。
(2)由$\frac {(a - 1)x + (2 - a)}{x - 2} > 0 \Rightarrow [(a - 1)x + (2 - a)](x - 2) > 0$,若$a = 1$,则$(x - 2) > 0$,即$x > 2$;若$a \neq 1$,原不等式可化为:$\frac {(a - 1)x + (2 - a)}{x - 2} > 0 \Rightarrow [(a - 1)x + (2 - a)](x - 2) = (a - 1)(x - \frac {a - 2}{a - 1})(x - 2) > 0$,若$a > 1$,则$\frac {a - 2}{a - 1} < 2$,解不等式得:$x > 2$或$x < \frac {a - 2}{a - 1}$;若$0 < a < 1$,则$\frac {a - 2}{a - 1} > 2$,解不等式得:$2 < x < \frac {a - 2}{a - 1}$;若$a = 0$,则$(-x + 2)(x - 2) = -(x - 2)^{2} > 0$,显然无解,即$x \in \varnothing$;若$a < 0$,则$\frac {a - 2}{a - 1} < 2$,解不等式得:$2 > x > \frac {a - 2}{a - 1}$。综上所述:当$a > 1$时,不等式的解集为$(-\infty, \frac {a - 2}{a - 1}) \cup (2, +\infty)$;当$a = 1$时,不等式的解集为$(2, +\infty)$;当$0 < a < 1$时,不等式的解集为$(2, \frac {a - 2}{a - 1})$;当$a = 0$时,不等式的解集为$\varnothing$;当$a < 0$时,不等式的解集为$(\frac {a - 2}{a - 1}, 2)$。
①若$a < 0$,则$\frac {2}{a} < 2$,解不等式得$x < \frac {2}{a}$或$x > 2$;②若$a \in (0,1)$,则$\frac {2}{a} > 2$,解不等式得$2 < x < \frac {2}{a}$;③若$a = 1$,则$(x - 2)^{2} < 0$无解,即$x \in \varnothing$;④若$a > 1$,则$\frac {2}{a} < 2$,解不等式得$2 > x > \frac {2}{a}$。综上所述:当$a = 0$时,不等式的解集为$(2, +\infty)$;当$a < 0$时,不等式的解集为$(-\infty, \frac {2}{a}) \cup (2, +\infty)$;当$0 < a < 1$时,不等式的解集为$(2, \frac {2}{a})$;当$a = 1$时,不等式的解集为$\varnothing$;当$a > 1$时,不等式的解集为$(\frac {2}{a}, 2)$。
(2)由$\frac {(a - 1)x + (2 - a)}{x - 2} > 0 \Rightarrow [(a - 1)x + (2 - a)](x - 2) > 0$,若$a = 1$,则$(x - 2) > 0$,即$x > 2$;若$a \neq 1$,原不等式可化为:$\frac {(a - 1)x + (2 - a)}{x - 2} > 0 \Rightarrow [(a - 1)x + (2 - a)](x - 2) = (a - 1)(x - \frac {a - 2}{a - 1})(x - 2) > 0$,若$a > 1$,则$\frac {a - 2}{a - 1} < 2$,解不等式得:$x > 2$或$x < \frac {a - 2}{a - 1}$;若$0 < a < 1$,则$\frac {a - 2}{a - 1} > 2$,解不等式得:$2 < x < \frac {a - 2}{a - 1}$;若$a = 0$,则$(-x + 2)(x - 2) = -(x - 2)^{2} > 0$,显然无解,即$x \in \varnothing$;若$a < 0$,则$\frac {a - 2}{a - 1} < 2$,解不等式得:$2 > x > \frac {a - 2}{a - 1}$。综上所述:当$a > 1$时,不等式的解集为$(-\infty, \frac {a - 2}{a - 1}) \cup (2, +\infty)$;当$a = 1$时,不等式的解集为$(2, +\infty)$;当$0 < a < 1$时,不等式的解集为$(2, \frac {a - 2}{a - 1})$;当$a = 0$时,不等式的解集为$\varnothing$;当$a < 0$时,不等式的解集为$(\frac {a - 2}{a - 1}, 2)$。
查看更多完整答案,请扫码查看