6. 给定六个二次根式:$\sqrt{\frac{2}{3}}$、$\sqrt{8}$、$\sqrt{12}$、$\sqrt{18}$、$\sqrt{24}$、$\sqrt{27}$. 可从这六个二次根式中选出几个(不能重复),进行加、减、乘、除中的几种运算,使所得结果为 $a\sqrt{3}$ (其中 $a$ 为有理数)的形式. 例如,$\sqrt{27} - \sqrt{12} = \sqrt{3}$,$\sqrt{24} ÷ \sqrt{18} = \frac{2}{3}\sqrt{3}$,$(\sqrt{18} - \sqrt{8}) ÷ \sqrt{\frac{2}{3}} = \sqrt{3}$. 请另举出两个这样的例子.
答案:
答案不唯一,例如,$\sqrt{\frac{2}{3}}\cdot\sqrt{8}=\frac{4}{\sqrt{3}}=\frac{4\sqrt{3}}{3}$,$\sqrt{8}÷\sqrt{24}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,$\sqrt{\frac{2}{3}}\cdot\sqrt{12}÷\sqrt{24}=$ $\frac{\sqrt{3}}{3}$,等等.
1. 计算:
(1) $\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{3}-1}$;
(2) $-\sqrt{6}÷(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}})$;
(3) $\frac{2\sqrt{3}+3\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}-\frac{2\sqrt{3}-3\sqrt{2}}{2\sqrt{3}+3\sqrt{2}}$;
(4) $(\sqrt{\frac{2}{5}}-\sqrt{\frac{5}{2}})÷(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{2}})$。
(1) $\frac{1}{\sqrt{3}+\sqrt{2}}-\frac{2}{\sqrt{3}-1}$;
(2) $-\sqrt{6}÷(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}})$;
(3) $\frac{2\sqrt{3}+3\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}-\frac{2\sqrt{3}-3\sqrt{2}}{2\sqrt{3}+3\sqrt{2}}$;
(4) $(\sqrt{\frac{2}{5}}-\sqrt{\frac{5}{2}})÷(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{2}})$。
答案:
(1)$-\sqrt{2}-1$.(2)$6\sqrt{3}+6\sqrt{2}$.(3)$-4\sqrt{6}$.(4)$\sqrt{2}+\sqrt{5}$.
查看更多完整答案,请扫码查看