5. 用计算器计算:
(1)$\sqrt{11 - 2} = $
(2)$\sqrt{1111 - 22} = $
(3)$\sqrt{111111 - 222} = $
(4)$\sqrt{11111111 - 2222} = $
(5)仔细观察上面几道题的计算结果,按照这个规律填空:
$\sqrt{\underbrace{111…1}_{200个1}-\underbrace{222…2}_{100个2}}= $
(1)$\sqrt{11 - 2} = $
3
.(2)$\sqrt{1111 - 22} = $
33
.(3)$\sqrt{111111 - 222} = $
333
.(4)$\sqrt{11111111 - 2222} = $
3333
.(5)仔细观察上面几道题的计算结果,按照这个规律填空:
$\sqrt{\underbrace{111…1}_{200个1}-\underbrace{222…2}_{100个2}}= $
$\underbrace{33\cdots 3}_{100个3}$
;$\sqrt{\underbrace{111…1}_{2n个1}-\underbrace{222…2}_{n个2}}= $$\underbrace{33\cdots 3}_{n个3}$
.
答案:
5.
(1) 3.
(2) 33.
(3) 333.
(4) 3333.
(5) $\underbrace{33\cdots 3}_{100个3}$;$\underbrace{33\cdots 3}_{n个3}$.
提示:观察前面计算结果中3的个数与被开方数中2的个数的关系,可得$\underbrace{33\cdots 3}_{100个3}$和$\underbrace{33\cdots 3}_{n个3}$.
(1) 3.
(2) 33.
(3) 333.
(4) 3333.
(5) $\underbrace{33\cdots 3}_{100个3}$;$\underbrace{33\cdots 3}_{n个3}$.
提示:观察前面计算结果中3的个数与被开方数中2的个数的关系,可得$\underbrace{33\cdots 3}_{100个3}$和$\underbrace{33\cdots 3}_{n个3}$.
1. 判断下列说法是否正确,正确的在括号里打“√”,错误的在括号里打“×”:
(1) 两个无理数的和还是无理数;(
(2) 两个无理数的差还是无理数;(
(3) 两个无理数的积还是无理数;(
(4) 两个无理数的商还是无理数.(
(1) 两个无理数的和还是无理数;(
×
)(2) 两个无理数的差还是无理数;(
×
)(3) 两个无理数的积还是无理数;(
×
)(4) 两个无理数的商还是无理数.(
×
)
答案:
1.(1)×.(2)×.(3)×.(4)×.
2. 计算:
(1) $\frac{1}{3}\sqrt{5}+\sqrt{5}-\frac{3}{2}\sqrt{5}$;
(2) $(\sqrt{5})^{2}-(\sqrt{13})^{2}+\sqrt[3]{125}$;
(3) $\sqrt{10^{4}}-\sqrt[3]{10^{3}}+\sqrt{10^{-2}}-\sqrt[3]{10^{-3}}$;
(4) $(\sqrt{10})^{2}+(\sqrt{2}×\sqrt{5})^{2}$;
(5) $2\sqrt{2}×(\frac{7}{2}\sqrt{2}-3+\frac{\sqrt{2}}{4})$;
(6) $[(\sqrt{2}+3\sqrt{7})-\sqrt{7}]÷\frac{1}{\sqrt{7}}×\frac{\sqrt{2}}{2}$.
(1) $\frac{1}{3}\sqrt{5}+\sqrt{5}-\frac{3}{2}\sqrt{5}$;
(2) $(\sqrt{5})^{2}-(\sqrt{13})^{2}+\sqrt[3]{125}$;
(3) $\sqrt{10^{4}}-\sqrt[3]{10^{3}}+\sqrt{10^{-2}}-\sqrt[3]{10^{-3}}$;
(4) $(\sqrt{10})^{2}+(\sqrt{2}×\sqrt{5})^{2}$;
(5) $2\sqrt{2}×(\frac{7}{2}\sqrt{2}-3+\frac{\sqrt{2}}{4})$;
(6) $[(\sqrt{2}+3\sqrt{7})-\sqrt{7}]÷\frac{1}{\sqrt{7}}×\frac{\sqrt{2}}{2}$.
答案:
2.(1)$-\dfrac{1}{6}\sqrt{5}$.(2)$-3$.(3)90.(4)20.(5)$15-6\sqrt{2}$.(6)$\sqrt{7}+7\sqrt{2}$.
查看更多完整答案,请扫码查看