1. 下列各组二次根式中,不是同类二次根式的是 (
A.$-\sqrt{\dfrac{1}{8}}与\sqrt{32}$;
B.$2\sqrt{a}与b\sqrt{a}$;
C.$\sqrt{5x}与\sqrt{45x^{3}y^{2}}$;
D.$\sqrt{xy}与\sqrt{x^{2}y^{2}}$.
D
)A.$-\sqrt{\dfrac{1}{8}}与\sqrt{32}$;
B.$2\sqrt{a}与b\sqrt{a}$;
C.$\sqrt{5x}与\sqrt{45x^{3}y^{2}}$;
D.$\sqrt{xy}与\sqrt{x^{2}y^{2}}$.
答案:
D.
2. 将下列各组二次根式先化成最简二次根式,再判断它们是不是同类二次根式.
(1)$\sqrt{\dfrac{8}{x}}与\sqrt{4x}$;
(2)$\sqrt{\dfrac{2s}{5}}与\sqrt{\dfrac{5}{2s}}$.
(1)$\sqrt{\dfrac{8}{x}}与\sqrt{4x}$;
(2)$\sqrt{\dfrac{2s}{5}}与\sqrt{\dfrac{5}{2s}}$.
答案:
(1)化成$\frac{2}{x}\sqrt{2x}$与$2\sqrt{x}$,不是.(2)化成$\frac{\sqrt{10s}}{5}$与$\frac{\sqrt{10s}}{2s}$,是.
3. 合并下列各式中的同类二次根式:
(1)$\dfrac{3}{4}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\sqrt{3}-\dfrac{7}{6}\sqrt{3}$;
(2)$2\sqrt{x}+\dfrac{2}{3}\sqrt{y}-\left(\dfrac{3}{5}\sqrt{x}-\dfrac{1}{3}\sqrt{y}\right)$.
(1)$\dfrac{3}{4}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\sqrt{3}-\dfrac{7}{6}\sqrt{3}$;
(2)$2\sqrt{x}+\dfrac{2}{3}\sqrt{y}-\left(\dfrac{3}{5}\sqrt{x}-\dfrac{1}{3}\sqrt{y}\right)$.
答案:
(1)$\frac{1}{4}\sqrt{3}$.(2)$\frac{7}{5}\sqrt{x}+\sqrt{y}$.
查看更多完整答案,请扫码查看