1.分解因式:(1)$x^{2}-x=$
(3)$(x-1)^{2}-2(x-1)=$
$x(x - 1)$
;(2)$x^{2}-6x+9=$$(x - 3)^2$
;(3)$(x-1)^{2}-2(x-1)=$
$(x - 1)(x - 3)$
.
答案:
(1)$x(x - 1)$
(2)$(x - 3)^2$
(3)$(x - 1)(x - 3)$
(1)$x(x - 1)$
(2)$(x - 3)^2$
(3)$(x - 1)(x - 3)$
2.方程$(x+1)(3x+2)= 0$的根为
$x_1 = -1$,$x_2 = -\frac{2}{3}$
.
答案:
$x_1 = -1$,$x_2 = -\frac{2}{3}$
3.一元二次方程$x^{2}= x$的根为(
A.$x_{1}= x_{2}= 0$
B.$x_{1}= x_{2}= 1$
C.$x_{1}= 0,x_{2}= 1$
D.$x_{1}= 0,x_{2}= -1$
C
)A.$x_{1}= x_{2}= 0$
B.$x_{1}= x_{2}= 1$
C.$x_{1}= 0,x_{2}= 1$
D.$x_{1}= 0,x_{2}= -1$
答案:
C
4.方程$(x+1)(x-2)= x+1$的解是(
A.$x= 2$
B.$x= 3$
C.$x_{1}= -1,x_{2}= 3$
D.$x_{1}= -1,x_{2}= 2$
C
)A.$x= 2$
B.$x= 3$
C.$x_{1}= -1,x_{2}= 3$
D.$x_{1}= -1,x_{2}= 2$
答案:
C
5.一元二次方程$x(x-1)= x$的根为(
A.$x= 2$
B.$x= 0$
C.$x_{1}= 0,x_{2}= 2$
D.$x_{1}= 0,x_{2}= 1$
C
)A.$x= 2$
B.$x= 0$
C.$x_{1}= 0,x_{2}= 2$
D.$x_{1}= 0,x_{2}= 1$
答案:
C
6.$x(x-2)= x-2$的根为(
A.$x= 1$
B.$x_{1}= 2,x_{2}= 0$
C.$x_{1}= 1,x_{2}= 2$
D.$x= 2$
C
)A.$x= 1$
B.$x_{1}= 2,x_{2}= 0$
C.$x_{1}= 1,x_{2}= 2$
D.$x= 2$
答案:
C
7.方程$(x-4)^{2}= (5-2x)^{2}$的根为(
A.$x_{1}= 4,x_{2}= \frac {5}{2}$
B.$x_{1}= -3,x_{2}= -1$
C.$x_{1}= 1,x_{2}= 3$
D.$x_{1}= x_{2}= 4$
C
)A.$x_{1}= 4,x_{2}= \frac {5}{2}$
B.$x_{1}= -3,x_{2}= -1$
C.$x_{1}= 1,x_{2}= 3$
D.$x_{1}= x_{2}= 4$
答案:
C
8.(教材P14练习1变式)用因式分解法解下列方程:
(1)$3y^{2}-6y= 0$; (2)$(x-2)^{2}-16= 0$; (3)$x^{2}-3x= x-4$.
(1)$3y^{2}-6y= 0$; (2)$(x-2)^{2}-16= 0$; (3)$x^{2}-3x= x-4$.
答案:
(1)$y_1 = 0$,$y_2 = 2$;
(2)$x_1 = 6$,$x_2 = -2$;
(3)$x_1 = x_2 = 2$。
(1)$y_1 = 0$,$y_2 = 2$;
(2)$x_1 = 6$,$x_2 = -2$;
(3)$x_1 = x_2 = 2$。
9.已知关于x的一元二次方程$x^{2}+2x+2k-2= 0$有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,求该方程的根.
(1)求k的取值范围;
(2)若k为正整数,求该方程的根.
答案:
(1)$\Delta = 12 - 8k > 0$,$k < \frac{3}{2}$;
(2)$\because k$为正整数,$\therefore k = 1$,$\therefore x^2 + 2x = 0$,$x(x + 2) = 0$,$\therefore x_1 = 0$,$x_2 = -2$。
(1)$\Delta = 12 - 8k > 0$,$k < \frac{3}{2}$;
(2)$\because k$为正整数,$\therefore k = 1$,$\therefore x^2 + 2x = 0$,$x(x + 2) = 0$,$\therefore x_1 = 0$,$x_2 = -2$。
查看更多完整答案,请扫码查看