10. (1)当$a =$
(2)当$a =$
-2
时,$|a + 2| + 6$的值最小,最小值是6
.(2)当$a =$
\frac{1}{2}
时,$5 - |2a - 1|$的值最大,最大值是5
.
答案:
$10.(1)-2 6 (2)\frac{1}{2} 5$
11. (1)当$x =$
(2)当$x =$
2025
时,$(x - 2025)^{2}-2026$的值最小,最小值是-2026
.(2)当$x =$
-2025
时,$2026-(x + 2025)^{2}$的值最大,最大值是2026
.
答案:
11.
(1)2025 -2026
(2)-2025 2026
(1)2025 -2026
(2)-2025 2026
12. (1)已知$|x + 1| + |y - 9| = 0$,则$x - y$的值是____.
(2)已知$(x + 2)^{2}+(y - 3)^{2}=0$,则$x^{y}$的值是____.
(3)已知$|x - 1|+(y + 2)^{2}+|3 - z| = 0$,则$(x - y)(y - z)$的值是____.
(2)已知$(x + 2)^{2}+(y - 3)^{2}=0$,则$x^{y}$的值是____.
(3)已知$|x - 1|+(y + 2)^{2}+|3 - z| = 0$,则$(x - y)(y - z)$的值是____.
答案:
12.
(1)-10
(2)-8
(3)-15
(1)-10
(2)-8
(3)-15
13. 在$1,-2,3,-4,-5$中任取两个数相乘,最大的积是$a$,最小的积是$b$.若$|x - a|+(y + b)^{2}=0$,则$(\frac{y}{x})^{2}$的值是
\frac{9}{16}
.
答案:
$13.\frac{9}{16}$
14. 若$|a^{2}-4|$与$(b + 2a)^{2}$互为相反数,求$(\frac{a}{b})^{3}$的值.
答案:
14.解:由题意,得|$a^2 - 4$|$ + (b + 2a)^2 = 0,$所以$a^2 - 4 = 0,$b + 2a = 0,所以a = 2,b = -4或a = -2,b = 4,所以$\frac{a}{b}=-\frac{1}{2},$所以$(\frac{a}{b})^3=(-\frac{1}{2})^3=-\frac{1}{8}。$
15. 若$|a - 2025|+(2025b + 1)^{2}=0$,求$a^{2025}\cdot b^{2024}$的值.
答案:
15.解:由题意,得a = 2025,$b = -\frac{1}{2025},$所以ab = -1,所以$a^{2025}\cdot b^{2024}=a^{2024}\cdot b^{2024}\cdot a = a = 2025。$
查看更多完整答案,请扫码查看