14. 解方程组:
(1)$\left\{\begin{array}{l} 2x+3y=0,\\ x-y=5;\end{array}\right. $
(2)$\left\{\begin{array}{l} \frac {x}{3}-\frac {y}{4}=1,\\ 3x-4y=2。\end{array}\right. $
(1)$\left\{\begin{array}{l} 2x+3y=0,\\ x-y=5;\end{array}\right. $
(2)$\left\{\begin{array}{l} \frac {x}{3}-\frac {y}{4}=1,\\ 3x-4y=2。\end{array}\right. $
答案:
解:
(1)$\begin{cases}2x + 3y = 0①,\\x - y = 5②,\end{cases}$②×3,得$3x - 3y = 15$③,①+③,得$5x = 15$,解得$x = 3$,把$x = 3$代入②,得$3 - y = 5$,解得$y = - 2$,
所以原方程组的解为$\begin{cases}x = 3,\\y = - 2。\end{cases}$
(2)$\begin{cases}\frac{x}{3} - \frac{y}{4} = 1①,\\3x - 4y = 2②,\end{cases}$由①得$4x - 3y = 12$③,②+③,得$x - y = 2$,则$x = y + 2$,把$x = y + 2$代入②,得$3(y + 2) - 4y = 2$,解得$y = 4$,则$x = 4 + 2 = 6$,
所以原方程组的解为$\begin{cases}x = 6,\\y = 4。\end{cases}$
(1)$\begin{cases}2x + 3y = 0①,\\x - y = 5②,\end{cases}$②×3,得$3x - 3y = 15$③,①+③,得$5x = 15$,解得$x = 3$,把$x = 3$代入②,得$3 - y = 5$,解得$y = - 2$,
所以原方程组的解为$\begin{cases}x = 3,\\y = - 2。\end{cases}$
(2)$\begin{cases}\frac{x}{3} - \frac{y}{4} = 1①,\\3x - 4y = 2②,\end{cases}$由①得$4x - 3y = 12$③,②+③,得$x - y = 2$,则$x = y + 2$,把$x = y + 2$代入②,得$3(y + 2) - 4y = 2$,解得$y = 4$,则$x = 4 + 2 = 6$,
所以原方程组的解为$\begin{cases}x = 6,\\y = 4。\end{cases}$
15. 已知方程组$\left\{\begin{array}{l} ax-by=4,\\ ax+by=2\end{array}\right. $的解为$\left\{\begin{array}{l} x=2,\\ y=1,\end{array}\right. $求$2a-3b$的值。
答案:
解:将$\begin{cases}x = 2,\\y = 1\end{cases}$代入$\begin{cases}ax - by = 4,\\ax + by = 2,\end{cases}$
解得$\begin{cases}a = \frac{3}{2},\\b = - 1,\end{cases}$
所以$2a - 3b = 6$。
解得$\begin{cases}a = \frac{3}{2},\\b = - 1,\end{cases}$
所以$2a - 3b = 6$。
16. 如图,过点$A(-2,0)$的直线$l_{1}:y=kx+b$与直线$l_{2}:y=-x+1$交于$P(-1,a)$。
(1)直接写出方程组$\left\{\begin{array}{l} y=kx+b,\\ y=-x+1\end{array}\right. $的解;
(2)求直线$l_{1}$对应的表达式;
(3)求$\triangle ABP$的面积。

(1)直接写出方程组$\left\{\begin{array}{l} y=kx+b,\\ y=-x+1\end{array}\right. $的解;
(2)求直线$l_{1}$对应的表达式;
(3)求$\triangle ABP$的面积。
答案:
解:
(1)把$P(-1,a)$代入$y = - x + 1$得$y = 2$,
所以$P(-1,2)$,
所以方程组$\begin{cases}y = kx + b,\\y = - x + 1\end{cases}$的解为$\begin{cases}x = - 1,\\y = 2;\end{cases}$
(2)把$A(-2,0)$,$P(-1,2)$代入$y = kx + b$得,$\begin{cases}- 2k + b = 0,\\- k + b = 2,\end{cases}$
解得$\begin{cases}k = 2,\\b = 4,\end{cases}$
所以直线$l_1$对应的表达式为$y = 2x + 4$;
(3)在$y = - x + 1$中,令$y = 0$,则$x = 1$,
所以$B(1,0)$,
所以$\triangle ABP$的面积$=\frac{1}{2}×3×2 = 3$。
(1)把$P(-1,a)$代入$y = - x + 1$得$y = 2$,
所以$P(-1,2)$,
所以方程组$\begin{cases}y = kx + b,\\y = - x + 1\end{cases}$的解为$\begin{cases}x = - 1,\\y = 2;\end{cases}$
(2)把$A(-2,0)$,$P(-1,2)$代入$y = kx + b$得,$\begin{cases}- 2k + b = 0,\\- k + b = 2,\end{cases}$
解得$\begin{cases}k = 2,\\b = 4,\end{cases}$
所以直线$l_1$对应的表达式为$y = 2x + 4$;
(3)在$y = - x + 1$中,令$y = 0$,则$x = 1$,
所以$B(1,0)$,
所以$\triangle ABP$的面积$=\frac{1}{2}×3×2 = 3$。
查看更多完整答案,请扫码查看