2024年绿色通道45分钟课时作业与单元测评数学选择性必修第二册
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2024年绿色通道45分钟课时作业与单元测评数学选择性必修第二册 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 数列$\frac{2}{3},\frac{4}{5},\frac{6}{7},\frac{8}{9},\cdots$的一个通项公式为( )
A. $a_{n}=\frac{n - 1}{n + 1}$
B. $a_{n}=\frac{n - 1}{2n + 1}$
C. $a_{n}=\frac{2(n - 1)}{2n - 1}$
D. $a_{n}=\frac{2n}{2n + 1}$
A. $a_{n}=\frac{n - 1}{n + 1}$
B. $a_{n}=\frac{n - 1}{2n + 1}$
C. $a_{n}=\frac{2(n - 1)}{2n - 1}$
D. $a_{n}=\frac{2n}{2n + 1}$
答案:
1.D 根据题意,得$a_1=\frac{2×1}{2×1+1}=\frac{2}{3}$,$a_2=\frac{2×2}{2×2+1}=\frac{4}{5}$,$a_3=\frac{2×3}{2×3+1}=\frac{6}{7}$,$a_4=\frac{2×4}{2×4+1}=\frac{8}{9}$,依此类推,则$a_n=\frac{2n}{2n+1}$.
2. 在数列$\{a_{n}\}$中,$\frac{a_{n + 1}}{a_{n}} = 1 + \frac{n}{a_{n}}$. 若$a_{n}=46,a_{1}=1$,则$n$的值为( )
A. 9
B. 10
C. 11
D. 12
A. 9
B. 10
C. 11
D. 12
答案:
2.B 由$\frac{a_{n + 1}}{a_{n}} = 1 + \frac{n}{a_{n}}$,得$a_{n + 1}-a_{n}=n$,所以$a_2 - a_1 = 1$,$a_3 - a_2 = 2$,$\cdots$,$a_n - a_{n - 1} = n - 1(n\geq2)$,所以$a_n - a_1 = 1 + 2 + \cdots + (n - 1)$,又$a_1 = 1$,所以$a_n = \frac{n(n - 1)}{2} + 1 (n\geq2)$,又当$n = 1$时,$a_1 = 1$也满足该式,所以$a_n = \frac{n(n - 1)}{2} + 1$. 由$a_n = 46$,解得$n = 10$(负值舍去). 故选B.
3. 等比数列$\{a_{n}\}$共有$2n + 1$项,奇数项之积为100,偶数项之积为120,则$a_{n + 1}=$( )
A. $\frac{6}{5}$
B. $\frac{5}{6}$
C. 20
D. 110
A. $\frac{6}{5}$
B. $\frac{5}{6}$
C. 20
D. 110
答案:
3.B 由题意知$S_{奇}=a_1a_3\cdots a_{2n + 1}=100$,$S_{偶}=a_2a_4\cdots a_{2n}=120$,$\therefore\frac{S_{奇}}{S_{偶}}=\frac{a_1a_3\cdots a_{2n + 1}}{a_2a_4\cdots a_{2n}}=\frac{a_1\cdot q^n}{1}=a_{n + 1}$,$\therefore a_{n + 1}=\frac{100}{120}=\frac{5}{6}$.
4. 下面图形由小正方形组成,请观察图①至图④的规律,并依此规律,写出第$n$个图形中小正方形的个数是( )

A. $n(n + 1)$
B. $\frac{n(n - 1)}{2}$
C. $\frac{n(n + 1)}{2}$
D. $n(n - 1)$
A. $n(n + 1)$
B. $\frac{n(n - 1)}{2}$
C. $\frac{n(n + 1)}{2}$
D. $n(n - 1)$
答案:
4.C $\because a_1 = 1$,$a_2 = 3 = 1 + 2$,$a_3 = 6 = 1 + 2 + 3$,$a_4 = 10 = 1 + 2 + 3 + 4$,$\therefore a_2 - a_1 = 2$,$a_3 - a_2 = 3$,$a_4 - a_3 = 4$,$\cdots$,$a_n - a_{n - 1} = n$,等式两边同时累加得$a_n - a_1 = 2 + 3 + \cdots + n$,即$a_n = 1 + 2 + \cdots + n = \frac{n(n + 1)}{2}$,$n\geq2$,$a_1 = 1$也符合该式,所以$a_n = \frac{n(n + 1)}{2}$,所以第$n$个图形中小正方形的个数是$\frac{n(n + 1)}{2}$. 故选C.
5. 已知数列$\{a_{n}\}$满足:$a_{1}=a_{2}=2,a_{n}=3a_{n - 1}+4a_{n - 2}(n\geq3)$,则$a_{9}+a_{10}=$( )
A. $4^{7}$
B. $4^{8}$
C. $4^{9}$
D. $4^{10}$
A. $4^{7}$
B. $4^{8}$
C. $4^{9}$
D. $4^{10}$
答案:
5.C 由题意得$a_1 + a_2 = 4$,由$a_n = 3a_{n - 1} + 4a_{n - 2}(n\geq3)$得$a_n + a_{n - 1} = 4(a_{n - 1} + a_{n - 2})$,即$\frac{a_n + a_{n - 1}}{a_{n - 1} + a_{n - 2}} = 4(n\geq3)$,所以数列$\{a_n + a_{n + 1}\}$是等比数列,公比为$4$,首项为$4$,所以$a_n + a_{n + 1} = 4^n$,故$a_9 + a_{10} = 4^9$. 故选C.
6.(多选)数列$\{a_{n}\}$的前$n$项和为$S_{n},a_{1}=1,a_{n + 1}=2S_{n}(n\in N^{*})$,则有( )
A. $S_{n}=3^{n - 1}$
B. $\{S_{n}\}$为等比数列
C. $a_{n}=2\cdot3^{n - 1}$
D. $a_{n}=\begin{cases}1,n = 1,\\2\cdot3^{n - 2},n\geq2\end{cases}$
A. $S_{n}=3^{n - 1}$
B. $\{S_{n}\}$为等比数列
C. $a_{n}=2\cdot3^{n - 1}$
D. $a_{n}=\begin{cases}1,n = 1,\\2\cdot3^{n - 2},n\geq2\end{cases}$
答案:
6.ABD 依题意$a_1 = 1$,$a_{n + 1} = 2S_n(n\in N^*)$,当$n = 1$时,$a_2 = 2a_1 = 2$,当$n\geq2$时,$a_n = 2S_{n - 1}$,$a_{n + 1} - a_n = 2S_n - 2S_{n - 1} = 2a_n$,所以$a_{n + 1} = 3a_n$,所以$a_n = a_2\cdot3^{n - 2} = 2\cdot3^{n - 2}(n\geq2)$,当$n = 1$时,$a_1 = 1$不符合上式,所以$a_n = \begin{cases}1,n = 1\\2\cdot3^{n - 2},n\geq2\end{cases}$;当$n\geq2$时,$S_n = \frac{a_{n + 1}}{2} = 3^{n - 1}$;当$n = 1$时,$S_1 = a_1 = 1$也符合上式,所以$S_n = 3^{n - 1}$. 因为$\frac{S_{n + 1}}{S_n} = 3$,所以数列$\{S_n\}$是首项为$1$,公比为$3$的等比数列. 故选ABD.
7. 记$S_{n}$为递增的等比数列$\{a_{n}\}$的前$n$项和,若$S_{1}=1,S_{4}=5S_{2}$,则$a_{n}=$_______.
答案:
7.$2^{n - 1}$
解析 $\because S_n$为递增的等比数列$\{a_n\}$的前$n$项和,$S_1 = 1$,$a_1 = S_1 = 1$,$S_4 = 5S_2$,$\therefore\begin{cases}\frac{a_1(1 - q^4)}{1 - q}=5\times\frac{a_1(1 - q^2)}{1 - q}\\q\gt1\end{cases}$,解得$\begin{cases}q = 2\\a_1 = 1\end{cases}$,$\therefore a_n = 2^{n - 1}$.
解析 $\because S_n$为递增的等比数列$\{a_n\}$的前$n$项和,$S_1 = 1$,$a_1 = S_1 = 1$,$S_4 = 5S_2$,$\therefore\begin{cases}\frac{a_1(1 - q^4)}{1 - q}=5\times\frac{a_1(1 - q^2)}{1 - q}\\q\gt1\end{cases}$,解得$\begin{cases}q = 2\\a_1 = 1\end{cases}$,$\therefore a_n = 2^{n - 1}$.
8. 已知数列$\{a_{n}\}$的前$n$项和为$S_{n}=3^{n}+2n + 1$,则$a_{n}=$__________.
答案:
8.$\begin{cases}6,n = 1\\2\cdot3^{n - 1} + 2,n\geq2\end{cases}$
解析 由题可得,当$n = 1$时,$a_1 = S_1 = 6$;当$n\geq2$时,$a_n = S_n - S_{n - 1} = (3^n + 2n + 1) - [3^{n - 1} + 2(n - 1) + 1] = 2\cdot3^{n - 1} + 2$. 由于$a_1 = 6$不符合此式,故$a_n = \begin{cases}6,n = 1\\2\cdot3^{n - 1} + 2,n\geq2\end{cases}$.
解析 由题可得,当$n = 1$时,$a_1 = S_1 = 6$;当$n\geq2$时,$a_n = S_n - S_{n - 1} = (3^n + 2n + 1) - [3^{n - 1} + 2(n - 1) + 1] = 2\cdot3^{n - 1} + 2$. 由于$a_1 = 6$不符合此式,故$a_n = \begin{cases}6,n = 1\\2\cdot3^{n - 1} + 2,n\geq2\end{cases}$.
9. 若数列$\{a_{n}\}$和$\{b_{n}\}$满足$a_{1}=\frac{1}{4},\log_{\frac{1}{4}}a_{n + 1}=\log_{\frac{1}{4}}a_{n}+1,b_{1}=1,2^{b_{n + 1}}-2^{b_{n}}+3 = 0$,求数列$\{a_{n}\},\{b_{n}\}$的通项公式.
答案:
9.解 因为$\log_{\frac{1}{4}}a_{n + 1}=\log_{\frac{1}{4}}a_{n}+1$,即$\log_{\frac{1}{4}}\frac{a_{n + 1}}{a_{n}} = 1 = \log_{\frac{1}{4}}\frac{1}{4}$,所以$\frac{a_{n + 1}}{a_{n}} = \frac{1}{4}$,又因为$a_1 = \frac{1}{4}$,所以数列$\{a_n\}$是以$\frac{1}{4}$为首项,$\frac{1}{4}$为公比的等比数列,所以$a_n = \frac{1}{4}\cdot(\frac{1}{4})^{n - 1} = \frac{1}{4^n}$. 因为$2^{b_{n + 1}} - 2^{b_{n}} + 3 = 0$,即$2^{b_{n + 1}} = 2^{b_{n}} - 3$,所以$b_{n + 1} = b_{n} + 3$,所以$b_{n + 1} - b_{n} = 3$. 又因为$b_1 = 1$,所以数列$\{b_n\}$是以$1$为首项,$3$为公差的等差数列,所以$b_n = 1 + 3(n - 1) = 3n - 2$.
查看更多完整答案,请扫码查看