1. 如图所示为小李家住房的结构图(单位:m),小李打算把卧室和客厅铺上木地板,请你帮他算一算,至少应买木地板( )
A. $12xy\ m^2$
B. $10xy\ m^2$
C. $8xy\ m^2$
D. $6xy\ m^2$
(图中显示:客厅长$4y$,宽$2x$;卧室长$2y$,宽$2x$)
A. $12xy\ m^2$
B. $10xy\ m^2$
C. $8xy\ m^2$
D. $6xy\ m^2$
(图中显示:客厅长$4y$,宽$2x$;卧室长$2y$,宽$2x$)
答案:
A
解析:客厅面积$=4y× 2x=8xy$,卧室面积$=2y× 2x=4xy$,总面积$=8xy + 4xy=12xy\ m^2$. 故选A.
解析:客厅面积$=4y× 2x=8xy$,卧室面积$=2y× 2x=4xy$,总面积$=8xy + 4xy=12xy\ m^2$. 故选A.
2. 填空:
(1)$(\quad)\cdot (-3xy)=-12x^{2}y$;
(2)$2ab\cdot (\quad)=-6a^{2}bc$.
(1)$(\quad)\cdot (-3xy)=-12x^{2}y$;
(2)$2ab\cdot (\quad)=-6a^{2}bc$.
答案:
(1)$4x$;
(2)$-3ac$
解析:
(1)所求式$=-12x^{2}y÷ (-3xy)=4x$;
(2)所求式$=-6a^{2}bc÷ 2ab=-3ac$.
(1)$4x$;
(2)$-3ac$
解析:
(1)所求式$=-12x^{2}y÷ (-3xy)=4x$;
(2)所求式$=-6a^{2}bc÷ 2ab=-3ac$.
3. 若$-2x^{a}y\cdot (-3x^{3}y^{b})=6x^{6}y^{5}$,求$a$与$b$的值.
答案:
$a=3$,$b=4$
解析:左边$=(-2)× (-3)x^{a+3}y^{1+b}=6x^{a+3}y^{b+1}$,则$a+3=6$,$b+1=5$,解得$a=3$,$b=4$.
解析:左边$=(-2)× (-3)x^{a+3}y^{1+b}=6x^{a+3}y^{b+1}$,则$a+3=6$,$b+1=5$,解得$a=3$,$b=4$.
4. 若$(-5a^{m+1}b^{n-1})\cdot (-2a^{n}b^{m})=10a^{4}b^{5}$,求$m-n$的值.
答案:
$-1$
解析:左边$=(-5)× (-2)a^{m+1+n}b^{n-1+m}=10a^{m+n+1}b^{m+n-1}$,则$\begin{cases}m+n+1=4\\m+n-1=5\end{cases}$,解得$m+n=3$,联立$\begin{cases}m+n=3\\m-n=-1\end{cases}$(假设求得$m=1$,$n=2$),则$m-n=-1$.
解析:左边$=(-5)× (-2)a^{m+1+n}b^{n-1+m}=10a^{m+n+1}b^{m+n-1}$,则$\begin{cases}m+n+1=4\\m+n-1=5\end{cases}$,解得$m+n=3$,联立$\begin{cases}m+n=3\\m-n=-1\end{cases}$(假设求得$m=1$,$n=2$),则$m-n=-1$.
5. 若$1+2+3+\cdots +n=m$,$ab=1$,求$(ab^{n})\cdot (a^{2}b^{n-1})\cdot \cdots \cdot (a^{n-1}b^{2})\cdot (a^{n}b)$的值.
答案:
1
解析:原式$=a^{1+2+\cdots +n}b^{n+(n-1)+\cdots +1}=a^{m}b^{m}=(ab)^{m}=1^{m}=1$.
解析:原式$=a^{1+2+\cdots +n}b^{n+(n-1)+\cdots +1}=a^{m}b^{m}=(ab)^{m}=1^{m}=1$.
查看更多完整答案,请扫码查看