1. 已知x,y是整数,满足x-y+3=0,ax-y-a=0,则整数a的所有可能值有( )
A. 4个 B. 5个 C. 6个 D. 8个
A. 4个 B. 5个 C. 6个 D. 8个
答案:
C
解析:由x-y+3=0得y=x+3,代入ax-y-a=0得ax-(x+3)-a=0→(a-1)x=a+3→x=(a+3)/(a-1)=1+4/(a-1).
∵x为整数,
∴4/(a-1)为整数,a-1是4的因数:±1,±2,±4,
∴a-1=1→a=2;a-1=-1→a=0;a-1=2→a=3;a-1=-2→a=-1;a-1=4→a=5;a-1=-4→a=-3,共6个,选C.
解析:由x-y+3=0得y=x+3,代入ax-y-a=0得ax-(x+3)-a=0→(a-1)x=a+3→x=(a+3)/(a-1)=1+4/(a-1).
∵x为整数,
∴4/(a-1)为整数,a-1是4的因数:±1,±2,±4,
∴a-1=1→a=2;a-1=-1→a=0;a-1=2→a=3;a-1=-2→a=-1;a-1=4→a=5;a-1=-4→a=-3,共6个,选C.
4. 用合适的方法解下列方程组.
(1)$\left\{\begin{array}{l} 4(\frac {2}{15}x-y)-3(\frac {1}{15}x+y)=6,\\ 4(\frac {2}{15}x-y)+3(\frac {1}{15}x+y)=18;\end{array}\right. $
(2)$\left\{\begin{array}{l} \frac {1}{6}(4x-7y)+\frac {1}{11}(4x+7y)=\frac {1}{2},\\ \frac {1}{6}(4x-7y)-\frac {1}{22}(4x+7y)=-1.\end{array}\right. $
(1)$\left\{\begin{array}{l} 4(\frac {2}{15}x-y)-3(\frac {1}{15}x+y)=6,\\ 4(\frac {2}{15}x-y)+3(\frac {1}{15}x+y)=18;\end{array}\right. $
(2)$\left\{\begin{array}{l} \frac {1}{6}(4x-7y)+\frac {1}{11}(4x+7y)=\frac {1}{2},\\ \frac {1}{6}(4x-7y)-\frac {1}{22}(4x+7y)=-1.\end{array}\right. $
答案:
(1)$\left\{\begin{array}{l} x=25\\ y=\frac{1}{3}\end{array}\right. $
设$u=4(\frac{2}{15}x-y)$,$v=3(\frac{1}{15}x+y)$,则$\left\{\begin{array}{l} u-v=6\\ u+v=18\end{array}\right. $,解得u=12,v=6。则$\left\{\begin{array}{l} 4(\frac{2}{15}x-y)=12\\ 3(\frac{1}{15}x+y)=6\end{array}\right. $,化简得$\left\{\begin{array}{l} \frac{2}{15}x-y=3\\ \frac{1}{15}x+y=2\end{array}\right. $,两式相加得$\frac{3}{15}x=5$,x=25,代入得y=$\frac{1}{3}$。
(2)$\left\{\begin{array}{l} x=1\\ y=1\end{array}\right. $
设$m=\frac{1}{6}(4x-7y)$,$n=\frac{1}{11}(4x+7y)$,则$\left\{\begin{array}{l} m+n=\frac{1}{2}\\ m-\frac{n}{2}=-1\end{array}\right. $,解得m=$-\frac{1}{2}$,n=1。则$\left\{\begin{array}{l} \frac{1}{6}(4x-7y)=-\frac{1}{2}\\ \frac{1}{11}(4x+7y)=1\end{array}\right. $,化简得$\left\{\begin{array}{l} 4x-7y=-3\\ 4x+7y=11\end{array}\right. $,两式相加得8x=8,x=1,代入得y=1。
(1)$\left\{\begin{array}{l} x=25\\ y=\frac{1}{3}\end{array}\right. $
设$u=4(\frac{2}{15}x-y)$,$v=3(\frac{1}{15}x+y)$,则$\left\{\begin{array}{l} u-v=6\\ u+v=18\end{array}\right. $,解得u=12,v=6。则$\left\{\begin{array}{l} 4(\frac{2}{15}x-y)=12\\ 3(\frac{1}{15}x+y)=6\end{array}\right. $,化简得$\left\{\begin{array}{l} \frac{2}{15}x-y=3\\ \frac{1}{15}x+y=2\end{array}\right. $,两式相加得$\frac{3}{15}x=5$,x=25,代入得y=$\frac{1}{3}$。
(2)$\left\{\begin{array}{l} x=1\\ y=1\end{array}\right. $
设$m=\frac{1}{6}(4x-7y)$,$n=\frac{1}{11}(4x+7y)$,则$\left\{\begin{array}{l} m+n=\frac{1}{2}\\ m-\frac{n}{2}=-1\end{array}\right. $,解得m=$-\frac{1}{2}$,n=1。则$\left\{\begin{array}{l} \frac{1}{6}(4x-7y)=-\frac{1}{2}\\ \frac{1}{11}(4x+7y)=1\end{array}\right. $,化简得$\left\{\begin{array}{l} 4x-7y=-3\\ 4x+7y=11\end{array}\right. $,两式相加得8x=8,x=1,代入得y=1。
查看更多完整答案,请扫码查看