1 [2024·四川泸州中考]化简:$(\frac{y^{2}}{x}+x - 2y)\div\frac{x^{2}-y^{2}}{x}$.
答案:
解 $(\frac{y^{2}}{x}+x - 2y)\div\frac{x^{2}-y^{2}}{x}=\frac{y^{2}+x^{2}-2xy}{x}\cdot\frac{x}{x^{2}-y^{2}}=\frac{(x - y)^{2}}{x}\cdot\frac{x}{(x + y)(x - y)}=\frac{x - y}{x + y}$
【变式】计算:$\frac{x^{2}-8x + 16}{x^{2}+2x}\div(\frac{12}{x + 2}-x + 2)+\frac{1}{x + 4}$.
答案:
解 原式$=\frac{(x - 4)^{2}}{x(x + 2)}\div(\frac{12}{x + 2}-\frac{x^{2}-4}{x + 2})+\frac{1}{x + 4}$
$=\frac{(x - 4)^{2}}{x(x + 2)}\div\frac{16 - x^{2}}{x + 2}+\frac{1}{x + 4}$
$=\frac{(x - 4)^{2}}{x(x + 2)}\cdot\frac{x + 2}{-(x + 4)(x - 4)}+\frac{1}{x + 4}$
$=-\frac{x - 4}{x(x + 4)}+\frac{x}{x(x + 4)}$
$=\frac{4}{x(x + 4)}$
$=\frac{(x - 4)^{2}}{x(x + 2)}\div\frac{16 - x^{2}}{x + 2}+\frac{1}{x + 4}$
$=\frac{(x - 4)^{2}}{x(x + 2)}\cdot\frac{x + 2}{-(x + 4)(x - 4)}+\frac{1}{x + 4}$
$=-\frac{x - 4}{x(x + 4)}+\frac{x}{x(x + 4)}$
$=\frac{4}{x(x + 4)}$
2 [2024·四川资阳中考]先化简,再求值:$(\frac{x + 1}{x}-1)\div\frac{x^{2}-4}{x^{2}+2x}$,其中$x = 3$.
答案:
解 $(\frac{x + 1}{x}-1)\div\frac{x^{2}-4}{x^{2}+2x}=(\frac{x + 1}{x}-\frac{x}{x})\div\frac{(x + 2)(x - 2)}{x(x + 2)}=\frac{1}{x}\cdot\frac{x(x + 2)}{(x + 2)(x - 2)}=\frac{1}{x - 2}$
把$x = 3$代入,原式$=\frac{1}{3 - 2}=1$
把$x = 3$代入,原式$=\frac{1}{3 - 2}=1$
【变式】先化简,再求值:$\frac{b}{a - 2b}\div(\frac{1}{a - b}-\frac{1}{a - 2b})$,其中$a = 2$,$b = 3$.
答案:
解 原式$=\frac{b}{a - 2b}\div\frac{a - 2b - a + b}{(a - b)(a - 2b)}=\frac{b}{a - 2b}\cdot\frac{(a - b)(a - 2b)}{-b}=b - a$
当$a = 2,b = 3$时,原式$=3 - 2 = 1$
当$a = 2,b = 3$时,原式$=3 - 2 = 1$
3 [2024·浙江宁波期末]先化简,再求值:$\frac{4 - a^{2}}{a^{2}+2a + 1}\div\frac{a - 2}{a + 1}+\frac{a}{a + 1}$,并在 - 1,0,2中选一个合适的数作为a的值代入求值.
答案:
解 $\frac{4 - a^{2}}{a^{2}+2a + 1}\div\frac{a + 2}{a + 1}+\frac{a}{a + 1}=\frac{-(a + 2)(a - 2)}{(a + 1)^{2}}\cdot\frac{a + 1}{a - 2}+\frac{a}{a + 1}=-\frac{a + 2}{a + 1}+\frac{a}{a + 1}=\frac{-a - 2 + a}{a + 1}=-\frac{2}{a + 1}$
$\because a + 1\neq0,a - 2\neq0,\therefore a\neq - 1,a\neq2,\therefore$取$a = 0$,
$\therefore$原式$=-\frac{2}{0 + 1}=-2$
$\because a + 1\neq0,a - 2\neq0,\therefore a\neq - 1,a\neq2,\therefore$取$a = 0$,
$\therefore$原式$=-\frac{2}{0 + 1}=-2$
【变式】先化简,再求值:$\frac{m^{3}-2m^{2}}{m^{2}-4m + 4}\div(\frac{9}{m - 3}+m + 3)$,其中$0<m<\sqrt{10}$,且m是整数.
答案:
解 原式$=\frac{m^{2}(m - 2)}{(m - 2)^{2}}\div[\frac{9}{m - 3}+\frac{(m + 3)(m - 3)}{m - 3}]=\frac{m^{2}}{m - 2}\div\frac{9 + m^{2}-9}{m - 3}=\frac{m^{2}}{m - 2}\cdot\frac{m - 3}{m^{2}}=\frac{m - 3}{m - 2}$
$\because m(m - 2)(m - 3)\neq0$,且$0\lt m\lt\sqrt{10},m$是整数,
$\therefore m$的值为$1$
当$m = 1$时,原式$=\frac{1 - 3}{1 - 2}=2$
$\because m(m - 2)(m - 3)\neq0$,且$0\lt m\lt\sqrt{10},m$是整数,
$\therefore m$的值为$1$
当$m = 1$时,原式$=\frac{1 - 3}{1 - 2}=2$
4 先化简,再求值:$(\frac{x}{x + y}+\frac{2y}{x + y})\cdot\frac{xy}{x + 2y}\div(\frac{1}{x}+\frac{1}{y})$,其中$x^{2}+y^{2}=17$,$(x - y)^{2}=9$.
答案:
解 $\because x^{2}+y^{2}=17,(x - y)^{2}=9$,
$\therefore 2xy=x^{2}+y^{2}-(x - y)^{2}=17 - 9 = 8$,
$\therefore xy = 4,(x + y)^{2}=x^{2}+y^{2}+2xy=17 + 8 = 25$
$\therefore$原式$=\frac{x + 2y}{x + y}\cdot\frac{xy}{x + 2y}\div\frac{x + y}{xy}=\frac{xy}{x + y}\cdot\frac{xy}{x + y}=\frac{(xy)^{2}}{(x + y)^{2}}=\frac{4^{2}}{25}=\frac{16}{25}$
$\therefore 2xy=x^{2}+y^{2}-(x - y)^{2}=17 - 9 = 8$,
$\therefore xy = 4,(x + y)^{2}=x^{2}+y^{2}+2xy=17 + 8 = 25$
$\therefore$原式$=\frac{x + 2y}{x + y}\cdot\frac{xy}{x + 2y}\div\frac{x + y}{xy}=\frac{xy}{x + y}\cdot\frac{xy}{x + y}=\frac{(xy)^{2}}{(x + y)^{2}}=\frac{4^{2}}{25}=\frac{16}{25}$
【变式】[2024·浙江台州开学考试]已知$a + b = m$,$a - b = n$,则$\frac{na + m^{2}}{b}-\frac{nb + m^{2}}{a}$的值为______(用含m,n的式子表示).
答案:
$\frac{4mn}{m - n}$ 解析 $\frac{na + m^{2}}{b}-\frac{nb + m^{2}}{a}=\frac{na^{2}+am^{2}}{ab}-\frac{nb^{2}+bm^{2}}{ab}=\frac{na^{2}+am^{2}-(nb^{2}+bm^{2})}{ab}=\frac{na^{2}+am^{2}-nb^{2}-bm^{2}}{ab}=\frac{n(a^{2}-b^{2})+m^{2}(a - b)}{ab}=\frac{n(a - b)(a + b)+m^{2}(a - b)}{ab}$ $\because a + b = m,a - b = n,\therefore m + n = a + b + a - b = 2a,m - n = a + b-(a - b)=2b,\therefore a=\frac{m + n}{2},b=\frac{m - n}{2},ab=\frac{(m + n)(m - n)}{4}$ 将$a + b = m,a - b = n,ab=\frac{(m + n)(m - n)}{4}$代入原式,得原式$=\frac{mn^{2}+nm^{2}}{\frac{(m + n)(m - n)}{4}}=\frac{mn(n + m)}{\frac{(m + n)(m - n)}{4}}=\frac{4mn(n + m)}{(m + n)(m - n)}=\frac{4mn}{m - n}$
查看更多完整答案,请扫码查看