9 观察下列等式:(x - 1)(x + 1)=x^{2}-1,(x - 1)·(x^{2}+x + 1)=x^{3}-1,(x - 1)(x^{3}+x^{2}+x + 1)=x^{4}-1.
由此可得:若(x - 1)(x^{4}+x^{3}+x^{2}+x + 1)= -2,则x^{2024}的值是 ( )
A. 0
B. 1
C. -1
D. 2^{2023}
由此可得:若(x - 1)(x^{4}+x^{3}+x^{2}+x + 1)= -2,则x^{2024}的值是 ( )
A. 0
B. 1
C. -1
D. 2^{2023}
答案:
B 解析:$(x - 1)(x^{4}+x^{3}+x^{2}+x + 1)=x^{5}-1=-2$,即$x^{5}=-1$,解得$x = - 1$,则$x^{2024}=(-1)^{2024}=1$. 故选B.
10 (一题多解)若(x^{2}-2x - 3)(x^{3}+5x^{2}-6x + 7)=a_{5}x^{5}+a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x + a_{0},则a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=________.
答案:
-28 解析:
∵$(x^{2}-2x - 3)(x^{3}+5x^{2}-6x + 7)=x^{5}+5x^{4}-6x^{3}+7x^{2}-2x^{4}-10x^{3}+12x^{2}-14x - 3x^{3}-15x^{2}+18x - 21=x^{5}+3x^{4}-19x^{3}+4x^{2}+4x - 21=a_{5}x^{5}+a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x + a_{0}$,
∴$a_{0}=-21$,$a_{1}=4$,$a_{2}=4$,$a_{3}=-19$,$a_{4}=3$,$a_{5}=1$,
∴$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=-21 + 4+4 - 19+3 + 1=-28$.
·一题多解:取$x = 1$,则$(x^{2}-2x - 3)(x^{3}+5x^{2}-6x + 7)=-4\times7=-28$,
∴$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=-28$.
∵$(x^{2}-2x - 3)(x^{3}+5x^{2}-6x + 7)=x^{5}+5x^{4}-6x^{3}+7x^{2}-2x^{4}-10x^{3}+12x^{2}-14x - 3x^{3}-15x^{2}+18x - 21=x^{5}+3x^{4}-19x^{3}+4x^{2}+4x - 21=a_{5}x^{5}+a_{4}x^{4}+a_{3}x^{3}+a_{2}x^{2}+a_{1}x + a_{0}$,
∴$a_{0}=-21$,$a_{1}=4$,$a_{2}=4$,$a_{3}=-19$,$a_{4}=3$,$a_{5}=1$,
∴$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=-21 + 4+4 - 19+3 + 1=-28$.
·一题多解:取$x = 1$,则$(x^{2}-2x - 3)(x^{3}+5x^{2}-6x + 7)=-4\times7=-28$,
∴$a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=-28$.
11 若x^{2}-5x = 6,则(x - 1)(x - 2)(x - 3)(x - 4)=________.
答案:
120 解析:$(x - 1)(x - 2)(x - 3)(x - 4)=(x - 1)(x - 4)\cdot(x - 2)(x - 3)=(x^{2}-5x + 4)(x^{2}-5x + 6)=(6 + 4)\times(6 + 6)=120$.
12 链接教材P89作业题第4题改编 解方程:
(x - 3)(x^{2}+3x + 9)-x(x^{2}+3)-9 = 9.
(x - 3)(x^{2}+3x + 9)-x(x^{2}+3)-9 = 9.
答案:
解:$x^{3}+3x^{2}+9x - 3x^{2}-9x - 27-x^{3}-3x - 9=9$.
$-36-3x=9$.
$-3x=45$.
$x=-15$.
$-36-3x=9$.
$-3x=45$.
$x=-15$.
13 一个长方形的长比宽多5 m. 若将其长减少3 m,宽增加4 m,则其面积将增加10 m^{2},求原长方形的长和宽.
答案:
解:设原长方形的宽为$x$m,则长为$(x + 5)$m.
根据题意,得$(x + 4)(x + 5 - 3)=x(x + 5)+10$.
整理,得$x^{2}+6x + 8=x^{2}+5x + 10$.
解得$x = 2$.
经检验,$x = 2$符合题意,且$x + 5=2 + 5=7$,
所以原长方形的长为7 m,宽为2 m.
根据题意,得$(x + 4)(x + 5 - 3)=x(x + 5)+10$.
整理,得$x^{2}+6x + 8=x^{2}+5x + 10$.
解得$x = 2$.
经检验,$x = 2$符合题意,且$x + 5=2 + 5=7$,
所以原长方形的长为7 m,宽为2 m.
14 [2024·浙江杭州月考]方方计算一道整式乘法的题:(2x + m)(5x - 4),由于方方抄错了第一个多项式中m前面的符号,把“+”写成“-”,得到的结果为10x^{2}-33x + 20.
(1)求m的值.
(2)计算这道整式乘法的正确结果.
(1)求m的值.
(2)计算这道整式乘法的正确结果.
答案:
解:
(1)根据题意,得$(2x - m)(5x - 4)$
$=10x^{2}-8x - 5mx + 4m$
$=10x^{2}-(8 + 5m)x + 4m$
$=10x^{2}-33x + 20$,
∴$4m=20$,解得$m = 5$.
(2)$(2x + 5)(5x - 4)$
$=10x^{2}-8x + 25x - 20$
$=10x^{2}+17x - 20$.
(1)根据题意,得$(2x - m)(5x - 4)$
$=10x^{2}-8x - 5mx + 4m$
$=10x^{2}-(8 + 5m)x + 4m$
$=10x^{2}-33x + 20$,
∴$4m=20$,解得$m = 5$.
(2)$(2x + 5)(5x - 4)$
$=10x^{2}-8x + 25x - 20$
$=10x^{2}+17x - 20$.
15 计算:(a_{1}+a_{2}+…+a_{n - 1})(a_{2}+a_{3}+…+a_{n})-(a_{2}+a_{3}+…+a_{n - 1})(a_{1}+a_{2}+…+a_{n})(n≥3,且n为正整数).
答案:
解:设$x=a_{1}+a_{2}+\cdots+a_{n}$,
则原式$=(x - a_{n})(x - a_{1})-(x - a_{1}-a_{n})x$
$=x^{2}-a_{1}x - a_{n}x + a_{1}a_{n}-x^{2}+a_{1}x + a_{n}x$
$=a_{1}a_{n}$.
则原式$=(x - a_{n})(x - a_{1})-(x - a_{1}-a_{n})x$
$=x^{2}-a_{1}x - a_{n}x + a_{1}a_{n}-x^{2}+a_{1}x + a_{n}x$
$=a_{1}a_{n}$.
计算:
(1)$(x + 3)(x + 2)=$________;
(2)$(x - 7)(x + 3)=$________;
(3)$(x - 4)(x - 5)=$________;
(4)$(x - 5)(x + 10)=$________;
(5)$(m + 8)(m + 3)=$________;
(6)$(t - 2)(t - 9)=$________;
(7)$(y + 6)(y - 9)=$________.
结论:$(x + p)(x + q)=$____________________.
(1)$(x + 3)(x + 2)=$________;
(2)$(x - 7)(x + 3)=$________;
(3)$(x - 4)(x - 5)=$________;
(4)$(x - 5)(x + 10)=$________;
(5)$(m + 8)(m + 3)=$________;
(6)$(t - 2)(t - 9)=$________;
(7)$(y + 6)(y - 9)=$________.
结论:$(x + p)(x + q)=$____________________.
答案:
(1)$x^{2}+5x + 6$.
(2)$x^{2}-4x - 21$.
(3)$x^{2}-9x + 20$.
(4)$x^{2}+5x - 50$.
(5)$m^{2}+11m + 24$.
(6)$t^{2}-11t + 18$.
(7)$y^{2}-3y - 54$.结论:$x^{2}+(p + q)x + pq$.
(1)$x^{2}+5x + 6$.
(2)$x^{2}-4x - 21$.
(3)$x^{2}-9x + 20$.
(4)$x^{2}+5x - 50$.
(5)$m^{2}+11m + 24$.
(6)$t^{2}-11t + 18$.
(7)$y^{2}-3y - 54$.结论:$x^{2}+(p + q)x + pq$.
查看更多完整答案,请扫码查看