1 [2024·浙江温州模拟]$(a^{2})^{5}$的计算结果是( )
A. $a^{2}$
B. $a^{5}$
C. $a^{7}$
D. $a^{10}$
A. $a^{2}$
B. $a^{5}$
C. $a^{7}$
D. $a^{10}$
答案:
D
2 计算:$(a^{2})^{3}\cdot a^{5}=$( )
A. $a^{10}$
B. $a^{11}$
C. $a^{13}$
D. $3a^{7}$
A. $a^{10}$
B. $a^{11}$
C. $a^{13}$
D. $3a^{7}$
答案:
B
3 若$k$为正整数,则$\underbrace{(k + k + \cdots + k)}_{k个k}^{k}=$( )
A. $2k^{k}$
B. $k^{2 + k}$
C. $k^{2k}$
D. $k^{k^{k}}$
A. $2k^{k}$
B. $k^{2 + k}$
C. $k^{2k}$
D. $k^{k^{k}}$
答案:
C 解析 $\underbrace{(k + k+\cdots + k)}_{k个k}^{k}=(k\cdot k)^{k}=(k^{2})^{k}=k^{2k}$. 故选 C.
C 解析 $\underbrace{(k + k+\cdots + k)}_{k个k}^{k}=(k\cdot k)^{k}=(k^{2})^{k}=k^{2k}$. 故选 C.
4 链教材P79例3改编 计算下列各式,结果用幂的形式表示.
(1)$(10^{4})^{3}=$_______;
(2)$(x^{m})^{2}=$_______;
(3)$-(x^{4})^{3}=$_______;
(4)$(a^{m - 2})^{3}=$_______;
(5)$[(a + 2b)^{4}]^{2}=$_______;
(6)$(-3)^{2}\times(-3^{3})^{4}=$_______.
(1)$(10^{4})^{3}=$_______;
(2)$(x^{m})^{2}=$_______;
(3)$-(x^{4})^{3}=$_______;
(4)$(a^{m - 2})^{3}=$_______;
(5)$[(a + 2b)^{4}]^{2}=$_______;
(6)$(-3)^{2}\times(-3^{3})^{4}=$_______.
答案:
(1)$10^{12}$.
(2)$x^{2m}$.
(3)$-x^{12}$.
(4)$a^{3m - 6}$.
(5)$(a + 2b)^{8}$.
(6)$3^{14}$.
(1)$10^{12}$.
(2)$x^{2m}$.
(3)$-x^{12}$.
(4)$a^{3m - 6}$.
(5)$(a + 2b)^{8}$.
(6)$3^{14}$.
5 一个棱长为$a^{3}$ cm的正方体的体积是_______$cm^{3}$,表面积是_______$cm^{2}$.
答案:
$a^{9}$ $6a^{6}$
6 已知$10^{a}=2,10^{b}=3$,求下列各式的值:
(1)$10^{2a}+10^{3b}$; (2)$10^{2a + 3b}$.
(1)$10^{2a}+10^{3b}$; (2)$10^{2a + 3b}$.
答案:
解
(1)$\because10^{a}=2,10^{b}=3$,
$\therefore$原式$=(10^{a})^{2}+(10^{b})^{3}=2^{2}+3^{3}=4 + 27 = 31$.
(2)$\because10^{a}=2,10^{b}=3$,
$\therefore$原式$=10^{2a}\times10^{3b}=(10^{a})^{2}\times(10^{b})^{3}=2^{2}\times3^{3}=4\times27 = 108$.
(1)$\because10^{a}=2,10^{b}=3$,
$\therefore$原式$=(10^{a})^{2}+(10^{b})^{3}=2^{2}+3^{3}=4 + 27 = 31$.
(2)$\because10^{a}=2,10^{b}=3$,
$\therefore$原式$=10^{2a}\times10^{3b}=(10^{a})^{2}\times(10^{b})^{3}=2^{2}\times3^{3}=4\times27 = 108$.
7 已知$2^{6}=a^{2}=4^{b}$,则$a + b=$_______.
答案:
11 解析 $\because2^{6}=a^{2}=4^{b},\therefore(2^{3})^{2}=a^{2}=(2^{2})^{b}=2^{2b}=2^{6}$,
$\therefore a = 2^{3},2b = 6,\therefore a = 8,b = 3,\therefore a + b = 11$.
$\therefore a = 2^{3},2b = 6,\therefore a = 8,b = 3,\therefore a + b = 11$.
8 [2024·浙江宁波期中]已知$m + 2n - 3 = 0$,则$2^{m}\cdot4^{n}$的值为_____.
答案:
8 解析 $\because m + 2n-3 = 0,\therefore m + 2n = 3,\therefore2^{m}\cdot4^{n}=2^{m}\cdot2^{2n}=2^{m + 2n}=2^{3}=8$.
9 新题型 阅读理解题 阅读下列材料:
若$a^{3}=2,b^{5}=3$,则$a,b$的大小关系是$a$_______$b$(填“<”或“>”).
解:因为$a^{15}=(a^{3})^{5}=2^{5}=32,b^{15}=(b^{5})^{3}=3^{3}=27,32>27$,所以$a^{15}>b^{15}$,所以$a>b$.
解答此问题:已知$x^{7}=2,y^{9}=3$,则$x$与$y$的大小关系是$x$_______$y$(填“<”或“>”).
若$a^{3}=2,b^{5}=3$,则$a,b$的大小关系是$a$_______$b$(填“<”或“>”).
解:因为$a^{15}=(a^{3})^{5}=2^{5}=32,b^{15}=(b^{5})^{3}=3^{3}=27,32>27$,所以$a^{15}>b^{15}$,所以$a>b$.
解答此问题:已知$x^{7}=2,y^{9}=3$,则$x$与$y$的大小关系是$x$_______$y$(填“<”或“>”).
答案:
< 解析 $\because x^{63}=(x^{7})^{9}=2^{9}=512,y^{63}=(y^{9})^{7}=3^{7}=2187$,
$2187>512,\therefore x^{63}<y^{63},\therefore x<y$.
$2187>512,\therefore x^{63}<y^{63},\therefore x<y$.
10 新题型 新定义运算题 如果$x^{n}=y$,那么我们规定$(x,y)=n$. 例如:因为$4^{2}=16$,所以$(4,16)=2$.
(1)$(-2,16)=$_______;若$(2,y)=6$,则$y=$_______.
(2)已知$(4,12)=a,(4,5)=b,(4,y)=c$,若$a + b = c$,求$y$的值.
(3)若$(5,10)=a,(2,10)=b$,求$\frac{25^{a}}{16^{b}}$的值.
(1)$(-2,16)=$_______;若$(2,y)=6$,则$y=$_______.
(2)已知$(4,12)=a,(4,5)=b,(4,y)=c$,若$a + b = c$,求$y$的值.
(3)若$(5,10)=a,(2,10)=b$,求$\frac{25^{a}}{16^{b}}$的值.
答案:
解
(1)$\because(-2)^{4}=16,\therefore(-2,16)=4$.
$\because(2,y]=6,\therefore y = 2^{6}=64$.
(2)$\because(4,12]=a,(4,5]=b,(4,y]=c$,
$\therefore4^{a}=12,4^{b}=5,4^{c}=y$,
$\therefore4^{a}\cdot4^{b}=12\times5 = 60$,
$\therefore4^{a + b}=60$.
$\because a + b = c$,
$\therefore4^{c}=y = 60$.
(3)$\because(5,10]=a,(2,10]=b$,
$\therefore5^{a}=10,2^{b}=10$,
$\therefore(5^{a})^{2}=100,(2^{b})^{4}=10000$,
$\therefore5^{2a}=100,2^{4b}=10000$,
$\therefore\frac{25^{a}}{16^{b}}=\frac{(5^{2})^{a}}{(2^{4})^{b}}=\frac{5^{2a}}{2^{4b}}=\frac{100}{10000}=\frac{1}{100}$.
(1)$\because(-2)^{4}=16,\therefore(-2,16)=4$.
$\because(2,y]=6,\therefore y = 2^{6}=64$.
(2)$\because(4,12]=a,(4,5]=b,(4,y]=c$,
$\therefore4^{a}=12,4^{b}=5,4^{c}=y$,
$\therefore4^{a}\cdot4^{b}=12\times5 = 60$,
$\therefore4^{a + b}=60$.
$\because a + b = c$,
$\therefore4^{c}=y = 60$.
(3)$\because(5,10]=a,(2,10]=b$,
$\therefore5^{a}=10,2^{b}=10$,
$\therefore(5^{a})^{2}=100,(2^{b})^{4}=10000$,
$\therefore5^{2a}=100,2^{4b}=10000$,
$\therefore\frac{25^{a}}{16^{b}}=\frac{(5^{2})^{a}}{(2^{4})^{b}}=\frac{5^{2a}}{2^{4b}}=\frac{100}{10000}=\frac{1}{100}$.
查看更多完整答案,请扫码查看