2025年寒假零距离七年级数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年寒假零距离七年级数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
7. 已知两个单项式$3x^{2}y^{3}$与$-2x^{3}y^{3}$的积为$mx^{5}y^{n}$,则$m + n=$_______.
答案:
0
8. 已知圆柱的底面半径为$x$,高为$2x + 4$,则它的体积为_______.
答案:
$2\pi x^{3}+4\pi x^{2}$
9. 已知单项式$M$、$N$满足等式$3x(M - 5x)=6x^{2}y^{3}+N$,则$M=$___________,$N=$___________.
答案:
$2xy^{3}-15x^{2}$
10. 已知:$a + b=\frac{3}{2}$,$ab = 1$,化简$(a - 2)(b - 2)$的结果是_______.
答案:
2
11. 当$k=$_______时,多项式$x - 1$与$2 - kx$的乘积不含$x$的一次项.
答案:
-2
12. 若规定$\begin{vmatrix}a&b\\c&d\end{vmatrix}=ad - bc$,则化简$\begin{vmatrix}x - 1&x\\+x&x + 4\end{vmatrix}=$_______.
答案:
$3x - 4$
13. 计算:
(1)$-5a^{2}bc^{3}\cdot ab^{2}$;
(2)$(-3x^{2}y^{3})\cdot(-\frac{1}{2}xy)\cdot(-6xy^{2}z)$;
(3)$(-2x^{3}y)\cdot(3xy^{2}-3xy + 1)$;
(4)$(4x + 5xy)(2x - y)$;
(5)$(x + 5y)(x + 4y)-(x - y)(x + y)$.
(1)$-5a^{2}bc^{3}\cdot ab^{2}$;
(2)$(-3x^{2}y^{3})\cdot(-\frac{1}{2}xy)\cdot(-6xy^{2}z)$;
(3)$(-2x^{3}y)\cdot(3xy^{2}-3xy + 1)$;
(4)$(4x + 5xy)(2x - y)$;
(5)$(x + 5y)(x + 4y)-(x - y)(x + y)$.
答案:
解:
(1)原式$=(-5\times1)\cdot(a^{2}\cdot a)\cdot(b\cdot b^{2})\cdot c^{3}=-5a^{3}b^{3}c^{3}$.
(2)原式$=[(-3)\times(-\frac{1}{2})\times(-6)]\cdot(x^{2}\cdot x\cdot x)\cdot(y^{3}\cdot y\cdot y^{2})\cdot z=-9x^{4}y^{6}z$.
(3)原式$=-2x^{3}y\cdot3xy^{2}+(-2x^{3}y)\cdot(-3xy)+(-2x^{3}y)\times1=-6x^{4}y^{3}+6x^{4}y^{2}-2x^{3}y$.
(4)原式$=8x^{2}-4xy + 10x^{2}y-5xy^{2}$.
(5)原式$=x^{2}+4xy + 5xy+20y^{2}-(x^{2}+xy-xy - y^{2})=x^{2}+9xy+20y^{2}-(x^{2}-y^{2})=x^{2}+9xy+20y^{2}-x^{2}+y^{2}=9xy+21y^{2}$.
(1)原式$=(-5\times1)\cdot(a^{2}\cdot a)\cdot(b\cdot b^{2})\cdot c^{3}=-5a^{3}b^{3}c^{3}$.
(2)原式$=[(-3)\times(-\frac{1}{2})\times(-6)]\cdot(x^{2}\cdot x\cdot x)\cdot(y^{3}\cdot y\cdot y^{2})\cdot z=-9x^{4}y^{6}z$.
(3)原式$=-2x^{3}y\cdot3xy^{2}+(-2x^{3}y)\cdot(-3xy)+(-2x^{3}y)\times1=-6x^{4}y^{3}+6x^{4}y^{2}-2x^{3}y$.
(4)原式$=8x^{2}-4xy + 10x^{2}y-5xy^{2}$.
(5)原式$=x^{2}+4xy + 5xy+20y^{2}-(x^{2}+xy-xy - y^{2})=x^{2}+9xy+20y^{2}-(x^{2}-y^{2})=x^{2}+9xy+20y^{2}-x^{2}+y^{2}=9xy+21y^{2}$.
14. 若$3^{m}=6$,$9^{n}=2$,求$3^{2m - 4n + 1}$的值.
答案:
解:$3^{2m - 4n+1}=3^{2m}\div3^{4n}\times3=(3^{m})^{2}\div(9^{n})^{2}\times3=6^{2}\div2^{2}\times3=27$.
15. 先化简,再求值.
(1)$(-\frac{1}{2}a^{3}b)\cdot(2bc^{2})^{3}\cdot(\frac{1}{2}a)^{2}\cdot(-\frac{bc}{2})^{3}$,其中$a = -1$,$b = 1$,$c = -1$.
(2)$3x(x^{2}-x - 1)-(x + 1)(3x^{2}-x)$,其中$x = -\frac{1}{2}$.
(1)$(-\frac{1}{2}a^{3}b)\cdot(2bc^{2})^{3}\cdot(\frac{1}{2}a)^{2}\cdot(-\frac{bc}{2})^{3}$,其中$a = -1$,$b = 1$,$c = -1$.
(2)$3x(x^{2}-x - 1)-(x + 1)(3x^{2}-x)$,其中$x = -\frac{1}{2}$.
答案:
解:
(1)原式$=-\frac{1}{2}\times8\times\frac{1}{4}\times(-\frac{1}{8})a^{3 + 2}b^{1+3+3}c^{6+3}=\frac{1}{8}a^{5}b^{7}c^{9}$;当$a = - 1$,$b = 1$,$c = - 1$时,原式$=\frac{1}{8}(-1)^{5}\times1^{7}\times(-1)^{9}=\frac{1}{8}$.
(2)原式$=3x^{3}-3x^{2}-3x-(3x^{3}-x^{2}+3x^{2}-x)=3x^{3}-3x^{2}-3x-3x^{3}+x^{2}-3x^{2}+x=-5x^{2}-2x$,把$x = -\frac{1}{2}$代入得$-5\times(-\frac{1}{2})^{2}-2\times(-\frac{1}{2})=-\frac{1}{4}$.
(1)原式$=-\frac{1}{2}\times8\times\frac{1}{4}\times(-\frac{1}{8})a^{3 + 2}b^{1+3+3}c^{6+3}=\frac{1}{8}a^{5}b^{7}c^{9}$;当$a = - 1$,$b = 1$,$c = - 1$时,原式$=\frac{1}{8}(-1)^{5}\times1^{7}\times(-1)^{9}=\frac{1}{8}$.
(2)原式$=3x^{3}-3x^{2}-3x-(3x^{3}-x^{2}+3x^{2}-x)=3x^{3}-3x^{2}-3x-3x^{3}+x^{2}-3x^{2}+x=-5x^{2}-2x$,把$x = -\frac{1}{2}$代入得$-5\times(-\frac{1}{2})^{2}-2\times(-\frac{1}{2})=-\frac{1}{4}$.
查看更多完整答案,请扫码查看