2025年练习生高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
23. [2023·广西高二学业水平测试]已知等差数列$\{ a_n \}$的前三项依次为 2,4,6,则该数列的第 10 项$a_{10} =$ (
A.25
B.20
C.15
D.10
B
)A.25
B.20
C.15
D.10
答案:
23.B 【解析】
∵等差数列$\{ a_{n}\}$的前三项依次为2,4,6,$\therefore a_{1} = 2$,$d = 4 - 2 = 2$,$\therefore a_{n} = 2 + 2(n - 1) = 2n$,$\therefore a_{10} = 20$. 故选B.
∵等差数列$\{ a_{n}\}$的前三项依次为2,4,6,$\therefore a_{1} = 2$,$d = 4 - 2 = 2$,$\therefore a_{n} = 2 + 2(n - 1) = 2n$,$\therefore a_{10} = 20$. 故选B.
24. [2023·黑龙江双鸭山第一中学高二期末]把 120 个面包分成 5 份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的 7 倍.若将这 5 份面包数按由多到少的顺序排列,则第 2 份面包的数量为 (
A.45
B.35
C.25
D.15
B
)A.45
B.35
C.25
D.15
答案:
24.B 【解析】设这5份面包数按由多到少的顺序排列为等差数列$\{ a_{n}\}$,则$a_{1} + a_{2} + a_{3} = 7(a_{4} + a_{5})$,$a_{1} + a_{2} + a_{3} + a_{4} + a_{5} = 120$,解得$a_{4} + a_{5} = 15$,$a_{1} + a_{2} + a_{3} = 105$,则$a_{1} + a_{2} + a_{3} = 3a_{2} = 105$,所以$a_{2} = 35$. 故选B.
25. 已知在公差不为 0 的等差数列$\{ a_n \}$中,$a_3 + a_9 = a_m + a_n$($m$,$n\in N^*$),则$mn$的最大值为 (
A.6
B.12
C.36
D.48
C
)A.6
B.12
C.36
D.48
答案:
25.C 【解析】由题设及等差数列的性质知$m + n = 12$. 又$m$,$n \in N^{*}$,所以$m + n \geqslant 2\sqrt{mn}$,即$mn \leqslant \frac {(m + n)^{2}}{4} = 36$,当且仅当$m = n = 6$时等号成立,所以$mn$的最大值为36. 故选C.
26. (多选)[2022·广东深圳宝安高二期末]若公差为$d$的等差数列$\{ a_n \}$满足$a_{n + 1} + a_n = 4n - 3$,则下列结论正确的是 (
A.数列$\{ a_{n + 1} + a_n \}$也是等差数列
B.$d = 2$
C.$a_1 = - \frac {1}{2}$
D.13 是数列$\{ a_n \}$中的项
ABC
)A.数列$\{ a_{n + 1} + a_n \}$也是等差数列
B.$d = 2$
C.$a_1 = - \frac {1}{2}$
D.13 是数列$\{ a_n \}$中的项
答案:
26.ABC 【解析】由$a_{n + 1} + a_{n} = 4n - 3$,知数列$\{ a_{n + 1} + a_{n}\}$是等差数列,A正确. 由$a_{n + 1} + a_{n} = 4n - 3$,得$a_{n + 2} + a_{n + 1} = 4n + 1$,所以$a_{n + 2} - a_{n} = 4$. 因为$\{ a_{n}\}$是等差数列,所以$d = 2$,B正确. 因为$a_{1} + a_{2} = 1$,所以$a_{1} + a_{1} + d = 1$,解得$a_{1} = - \frac {1}{2}$,C正确. 易得$a_{n} = 2n - \frac {5}{2}$,令$a_{n} = 2n - \frac {5}{2} = 13$,解得$n = \frac {31}{4}$,D错误. 故选ABC.
27. [2023·河北邯郸永年第二中学高二月考]已知等差数列$\{ a_n \}$满足$a_1 + a_2 + a_3 + ·s + a_{101} = 0$,则有 (
A.$a_1 + a_{101} > 0$
B.$a_2 + a_{101} < 0$
C.$a_3 + a_{99} = 0$
D.$a_{51} = 51$
C
)A.$a_1 + a_{101} > 0$
B.$a_2 + a_{101} < 0$
C.$a_3 + a_{99} = 0$
D.$a_{51} = 51$
答案:
27.C 【解析】
∵$a_{1} + a_{2} + ·s + a_{101} = 0$,且$a_{1} + a_{101} = a_{2} + a_{100} = a_{3} + a_{99} = ·s = 2a_{51}$,$\therefore 101a_{51} = 0$,$\therefore a_{51} = 0$,$\therefore a_{1} + a_{101} = a_{3} + a_{99} = 2a_{51} = 0$,故C正确,A,D错误.$a_{2} + a_{101} = a_{1} + a_{101} + d = d$,且通过已知条件,无法确定$d$的大小,故B错误. 选C.
∵$a_{1} + a_{2} + ·s + a_{101} = 0$,且$a_{1} + a_{101} = a_{2} + a_{100} = a_{3} + a_{99} = ·s = 2a_{51}$,$\therefore 101a_{51} = 0$,$\therefore a_{51} = 0$,$\therefore a_{1} + a_{101} = a_{3} + a_{99} = 2a_{51} = 0$,故C正确,A,D错误.$a_{2} + a_{101} = a_{1} + a_{101} + d = d$,且通过已知条件,无法确定$d$的大小,故B错误. 选C.
28. [2023·福建宁德第一中学高二月考]南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一高阶等差数列,其前 7 项分别为 1,5,11,21,37,61,95,则该数列的第 8 项为 (
A.99
B.131
C.139
D.141
D
)A.99
B.131
C.139
D.141
答案:
28.D 【解析】设该高阶等差数列的第8项为$x$,用数列的后一项减去前一项得到一个新数列,把得到的数列也用后一项减去前一项再得到一个新数列,即得到了一个等差数列(根据题中所给高阶等差数列的定义,找出其一般规律即可求解),如图.
由图可得$x - 95 - 34 = 12$,解得$x = 141$. 故选D.
28.D 【解析】设该高阶等差数列的第8项为$x$,用数列的后一项减去前一项得到一个新数列,把得到的数列也用后一项减去前一项再得到一个新数列,即得到了一个等差数列(根据题中所给高阶等差数列的定义,找出其一般规律即可求解),如图.
由图可得$x - 95 - 34 = 12$,解得$x = 141$. 故选D.
29. [2023·江西南昌新建第二中学高二学业水平考核]已知数列$\{ a_n \}$满足$a_1 = 2$,$a_2 = 1$,且$\frac {a_{n - 1} - a_n}{a_n a_{n - 1}} = \frac {a_n - a_{n + 1}}{a_n a_{n + 1}}$($n \geqslant 2$),则$a_{100} =$ (
A.$\frac {1}{2^{100}}$
B.$\frac {1}{2^{99}}$
C.$\frac {1}{100}$
D.$\frac {1}{50}$
D
)A.$\frac {1}{2^{100}}$
B.$\frac {1}{2^{99}}$
C.$\frac {1}{100}$
D.$\frac {1}{50}$
答案:
29.D 【解析】$\because \frac {a_{n} - a_{n - 1}}{a_{n}a_{n - 1}} = \frac {a_{n - 1} - a_{n}}{a_{n}a_{n - 1}}(n \geqslant 2)$,$\therefore \frac {1}{a_{n - 1}} - \frac {1}{a_{n}} = \frac {2}{a_{n}a_{n - 1}}(n \geqslant 2)$. $\because a_{1} = 2$,$a_{2} = 1$,$\therefore \frac {1}{a_{1}} = \frac {1}{2}$,$\frac {1}{a_{2}} = 1$,$\therefore \frac {1}{a_{1}} - \frac {1}{a_{2}} = \frac {1}{2}$,$\therefore \{ \frac {1}{a_{n}}\}$是首项为$\frac {1}{2}$,公差为$\frac {1}{2}$的等差数列,$\therefore \frac {1}{a_{n}} = \frac {1}{2} + (n - 1) × \frac {1}{2} = \frac {n}{2}$,则$a_{n} = \frac {2}{n}$,$\therefore a_{100} = \frac {2}{100} = \frac {1}{50}$. 故选D.
30. [2023·安徽马鞍山第二中学高二月考]在等差数列$\{ a_n \}$中,若$a_5 = 13$,$a_6 + a_8 = 18$,则数列$\{ a_n \}$的通项公式为$a_n =$
$-2n + 23$
.
答案:
30.$-2n + 23$ 【解析】设等差数列$\{ a_{n}\}$的公差为$d$. 由$a_{6} + a_{8} = 2a_{7} = 18$,得$a_{7} = 9$,所以$d = \frac {a_{7} - a_{5}}{7 - 5} = \frac {9 - 13}{2} = - 2$,所以$a_{n} = a_{5} + (n - 5)d = 13 - 2(n - 5) = - 2n + 23$.
31. [2023·河南顶尖名校联盟高二联赛]已知数列$\{ a_n \}$满足$a_1 = 1$,$a_n + a_{n + 1} = 3n$($n\in N^*$),则$a_{2018} =$
3026
.
答案:
31.3026 【解析】$\because a_{n} + a_{n + 1} = 3n$,$\therefore a_{n + 1} + a_{n + 2} = 3(n + 1)$,$\therefore a_{n + 2} - a_{n} = 3$. 由题意得$a_{1} + a_{2} = 3$,$\therefore a_{2} = 3 - a_{1} = 2$,$\therefore \{ a_{n}\}$的偶数项构成首项为2,公差为3的等差数列,$\therefore a_{2018} = a_{2} + 1008 × 3 = 2 + 3024 = 3026$.
32. 设等差数列$\{ a_n \}$满足$a_7 + a_8 + a_9 > 0$,$a_7 + a_{10} < 0$. 若$a_n > 0$,则项数$n$的最大值是
8
.
答案:
32.8 【解析】因为$a_{7} + a_{8} + a_{9} = 3a_{8} > 0$,$a_{7} + a_{10} = a_{8} + a_{9} < 0$,所以$a_{8} > 0$,$a_{9} < 0$,故等差数列$\{ a_{n}\}$单调递减,所以对于等差数列$\{ a_{n}\}$,使$a_{n} > 0$成立的$n$的最大值为8.
33. 已知数列$\{ a_n \}$,$\{ b_n \}$满足:$b_n = a_n + 3a_{n + 1}$,$n\in N^*$.若数列$\{ b_n \}$是等差数列,且$b_1 = 5a_2 - a_3$,试判断数列$\{ a_n \}$是否为等差数列? 证明结论.
答案:
33.【解】数列$\{ a_{n}\}$是等差数列. 证明如下:
由$b_{n} = 5a_{2} - a_{3}$得$a_{1} + 3a_{2} + a_{3} = 0$.
由$b_{n} = a_{n} + 3a_{n + 1}$得$b_{n + 1} = a_{n + 1} + 3a_{n + 2}$,$b_{n + 2} = a_{n + 2} + 3a_{n + 3}$.
由于$\{ b_{n}\}$是等差数列,所以$2b_{n + 1} = b_{n} + b_{n + 2}$,
即$2(a_{n + 1} + 3a_{n + 2}) = a_{n} + 3a_{n + 2} + a_{n + 2} + 3a_{n + 3}$,
整理,得$a_{n + 3} - 2a_{n + 2} + a_{n + 1} = - \frac {1}{3}(a_{n + 2} - 2a_{n + 1} + a_{n})$,
所以$a_{n + 2} - 2a_{n + 1} + a_{n} = ( - \frac {1}{3})^{n - 1} × (a_{3} - 2a_{2} + a_{1}) = 0$,
所以$2a_{n + 1} = a_{n} + a_{n + 2}$,所以数列$\{ a_{n}\}$是等差数列.
由$b_{n} = 5a_{2} - a_{3}$得$a_{1} + 3a_{2} + a_{3} = 0$.
由$b_{n} = a_{n} + 3a_{n + 1}$得$b_{n + 1} = a_{n + 1} + 3a_{n + 2}$,$b_{n + 2} = a_{n + 2} + 3a_{n + 3}$.
由于$\{ b_{n}\}$是等差数列,所以$2b_{n + 1} = b_{n} + b_{n + 2}$,
即$2(a_{n + 1} + 3a_{n + 2}) = a_{n} + 3a_{n + 2} + a_{n + 2} + 3a_{n + 3}$,
整理,得$a_{n + 3} - 2a_{n + 2} + a_{n + 1} = - \frac {1}{3}(a_{n + 2} - 2a_{n + 1} + a_{n})$,
所以$a_{n + 2} - 2a_{n + 1} + a_{n} = ( - \frac {1}{3})^{n - 1} × (a_{3} - 2a_{2} + a_{1}) = 0$,
所以$2a_{n + 1} = a_{n} + a_{n + 2}$,所以数列$\{ a_{n}\}$是等差数列.
查看更多完整答案,请扫码查看