2025年练习生高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
11.已知数列$\{ a_{n}\}$的前$n$项和$S_{n} = 3n - 1$,数列$\{ b_{n}\}$满足$b_{1} = - 1,b_{n + 1} = b_{n} + (2n - 1)$.求数列$\{ a_{n}\}$与$\{ b_{n}\}$的通项公式.
答案:
11.【解】因为$S_{n}=3n - 1$,
当$n\geq2$时,$S_{n - 1}=3n - 4$,
所以$a_{n}=S_{n}-S_{n - 1}=3n - 1 - 3n + 4 = 3(n\geq2)$.
又当$n = 1$时,$a_{1}=S_{1}=2\neq3$,
所以$a_{n}=\begin{cases}2,n = 1,\\3,n\geq2.\end{cases}$
因为$b_{n + 1}=b_{n}+(2n - 1)$,
所以$b_{2}-b_{1}=1,b_{3}-b_{2}=3,b_{4}-b_{3}=5,·s,b_{n}-b_{n - 1}=2n - 3(n\geq2)$,以上各式相加得$b_{n}-b_{1}=1 + 3 + 5+·s+(2n - 3)=\frac{(n - 1)(1 + 2n - 3)}{2}=(n - 1)^{2}(n\geq2)$,
所以$b_{n}=n^{2}-2n(n\geq2)$.
又$b_{1}=-1$符合上式,所以$b_{n}=n^{2}-2n$.
当$n\geq2$时,$S_{n - 1}=3n - 4$,
所以$a_{n}=S_{n}-S_{n - 1}=3n - 1 - 3n + 4 = 3(n\geq2)$.
又当$n = 1$时,$a_{1}=S_{1}=2\neq3$,
所以$a_{n}=\begin{cases}2,n = 1,\\3,n\geq2.\end{cases}$
因为$b_{n + 1}=b_{n}+(2n - 1)$,
所以$b_{2}-b_{1}=1,b_{3}-b_{2}=3,b_{4}-b_{3}=5,·s,b_{n}-b_{n - 1}=2n - 3(n\geq2)$,以上各式相加得$b_{n}-b_{1}=1 + 3 + 5+·s+(2n - 3)=\frac{(n - 1)(1 + 2n - 3)}{2}=(n - 1)^{2}(n\geq2)$,
所以$b_{n}=n^{2}-2n(n\geq2)$.
又$b_{1}=-1$符合上式,所以$b_{n}=n^{2}-2n$.
12.已知$a_{1} = 1,a_{n} = n( a_{n + 1} - a_{n} )( n\in \mathbf{N}^{*} )$,则数列$\{ a_{n}\}$的通项公式$a_{n} =$ (
A.$2n - 1$
B.$\left ( \frac{n + 1}{n} \right )^{n + 1}$
C.$n^{2}$
D.$n$
D
)A.$2n - 1$
B.$\left ( \frac{n + 1}{n} \right )^{n + 1}$
C.$n^{2}$
D.$n$
答案:
12.D【解析】由$a_{n}=n(a_{n + 1}-a_{n})$,得$(n + 1)a_{n}=na_{n + 1}$,即$\frac{a_{n + 1}}{a_{n}}=\frac{n + 1}{n}$,则$\frac{a_{n}}{a_{n - 1}}=\frac{n}{n - 1},\frac{a_{n - 1}}{a_{n - 2}}=\frac{n - 1}{n - 2},\frac{a_{n - 2}}{a_{n - 3}}=\frac{n - 2}{n - 3},·s,\frac{a_{2}}{a_{1}}=\frac{2}{1}$,
$\frac{a_{n}}{a_{1}}=\frac{2}{1}×\frac{3}{2}×\frac{4}{3}×·s×\frac{n}{n - 1}=n,n\geq2$,以上各式相乘可得$\frac{a_{n}}{a_{1}} = n,n\geq2$,所以$a_{n}=n,n\geq2$,又$a_{1}=1$也符合上式,所以$a_{n}=n$.故选D.
$\frac{a_{n}}{a_{1}}=\frac{2}{1}×\frac{3}{2}×\frac{4}{3}×·s×\frac{n}{n - 1}=n,n\geq2$,以上各式相乘可得$\frac{a_{n}}{a_{1}} = n,n\geq2$,所以$a_{n}=n,n\geq2$,又$a_{1}=1$也符合上式,所以$a_{n}=n$.故选D.
13.已知数列$\{ a_{n}\}$中,$a_{1} = 1,na_{n + 1} = 2( a_{1} + a_{2} + ·s + a_{n} )( n\in \mathbf{N}^{*} )$,则数列$\{ a_{n}\}$的通项公式为 (
A.$a_{n} = n$
B.$a_{n} = 2n - 1$
C.$a_{n} = \frac{n + 1}{2n}$
D.$a_{n} = \begin{cases} 1,n = 1 \\n + 1,n \geqslant 2 \end{cases}$
A
)A.$a_{n} = n$
B.$a_{n} = 2n - 1$
C.$a_{n} = \frac{n + 1}{2n}$
D.$a_{n} = \begin{cases} 1,n = 1 \\n + 1,n \geqslant 2 \end{cases}$
答案:
13.A【解析】由$na_{n + 1}=2(a_{1}+a_{2}+·s+a_{n})$①,得$(n - 1)a_{n}=2(a_{1}+a_{2}+·s+a_{n - 1})(n\geq2)$②,$a_{2}=2a_{1}=2$.① - ②得,$na_{n + 1}-(n - 1)a_{n}=2a_{n}(n\geq2)$,即$na_{n + 1}=(n + 1)a_{n}(n\geq2)$,
所以$\frac{a_{n + 1}}{a_{n}}=\frac{n + 1}{n}(n\geq2)$,所以$a_{n}=a_{2}·\frac{a_{3}}{a_{2}}·\frac{a_{4}}{a_{3}}·s\frac{a_{n}}{a_{n - 1}}=2×\frac{3}{2}×\frac{4}{3}×·s×\frac{n}{n - 1}=n(n\geq3)$,所以$a_{n}=n(n\geq3)$.又$a_{1}=1$,$a_{2}=2$也符合上式,所以$a_{n}=n$.故选A.
所以$\frac{a_{n + 1}}{a_{n}}=\frac{n + 1}{n}(n\geq2)$,所以$a_{n}=a_{2}·\frac{a_{3}}{a_{2}}·\frac{a_{4}}{a_{3}}·s\frac{a_{n}}{a_{n - 1}}=2×\frac{3}{2}×\frac{4}{3}×·s×\frac{n}{n - 1}=n(n\geq3)$,所以$a_{n}=n(n\geq3)$.又$a_{1}=1$,$a_{2}=2$也符合上式,所以$a_{n}=n$.故选A.
14.已知数列$\{ a_{n}\}$的首项为$1$,数列$\{ b_{n}\}$为等比数列,且$b_{n} = \frac{a_{n + 1}}{a_{n}}$.若$b_{10}b_{11} = 202 0^{\frac{1}{10}}$,则$a_{21} =$(
A.1 008
B.1 024
C.2 019
D.2 020
D
)A.1 008
B.1 024
C.2 019
D.2 020
答案:
14.D思维路径由$a_{21}=a_{1}·\frac{a_{2}}{a_{1}}·\frac{a_{3}}{a_{2}}·s\frac{a_{20}}{a_{19}}·\frac{a_{21}}{a_{20}}$,结合等比数列的性质$\to a_{21}=a_{1}·(b_{10}b_{11})^{10}\to$得解.
【解析】由数列$\{ b_{n}\}$为等比数列,得$b_{10}b_{19}=·s=b_{1}b_{20}=2020^{10}$.又$b_{n}=\frac{a_{n + 1}}{a_{n}}$,所以$a_{21}=a_{1}·\frac{a_{2}}{a_{1}}·\frac{a_{3}}{a_{2}}·s\frac{a_{20}}{a_{19}}·\frac{a_{21}}{a_{20}}=a_{1}·(b_{10}b_{11})^{10}=(2020^{10})^{10}=2020$.故选D.
【解析】由数列$\{ b_{n}\}$为等比数列,得$b_{10}b_{19}=·s=b_{1}b_{20}=2020^{10}$.又$b_{n}=\frac{a_{n + 1}}{a_{n}}$,所以$a_{21}=a_{1}·\frac{a_{2}}{a_{1}}·\frac{a_{3}}{a_{2}}·s\frac{a_{20}}{a_{19}}·\frac{a_{21}}{a_{20}}=a_{1}·(b_{10}b_{11})^{10}=(2020^{10})^{10}=2020$.故选D.
15.数列$\{ a_{n}\}$满足$a_{1} = \frac{2}{3},( 2^{n + 2} - 1 ) a_{n + 1} = ( 2^{n + 1} - 2 ) a_{n}( n\in \mathbf{N}^{*} )$,则$\{ a_{n}\}$的通项公式为$a_{n} =$
$\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}$
.
答案:
15.$\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}$思维路径由条件得$\frac{a_{n + 1}}{a_{n}}=2×\frac{2^{n}}{2^{n + 2}-1}$,利用累乘法得$\{ a_{n}\}$的通项公式.
【解析】由$(2^{n + 2}-1)a_{n + 1}=(2^{n + 1}-2)a_{n}$,得$\frac{a_{n + 1}}{a_{n}}=\frac{2^{n + 1}-2}{2^{n + 2}-1}=2×\frac{2^{n}-1}{2^{n + 2}-1}$,则$\frac{a_{n}}{a_{n - 1}}×\frac{a_{n - 1}}{a_{n - 2}}×\frac{a_{n - 2}}{a_{n - 3}}×·s×\frac{a_{2}}{a_{1}}=2×\frac{2^{n}-1}{2^{n + 1}-1}×2×\frac{2^{n - 1}-1}{2^{n}-1}×2×\frac{2^{n - 2}-1}{2^{n - 1}-1}×·s×2×\frac{2^{2}-1}{2^{3}-1}=2^{n - 1}×\frac{3}{(2^{n + 1}-1)(2^{n}-1)}(n\geq2)$,即$\frac{a_{n}}{a_{1}}=\frac{3×2^{n - 1}}{(2^{n}-1)(2^{n + 1}-1)}(n\geq2)$.又$a_{1}=\frac{2}{3}$,所以$a_{n}=\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}(n\geq2)$.因为当$n = 1$时也符合上式,所
以$a_{n}=\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}$.
【解析】由$(2^{n + 2}-1)a_{n + 1}=(2^{n + 1}-2)a_{n}$,得$\frac{a_{n + 1}}{a_{n}}=\frac{2^{n + 1}-2}{2^{n + 2}-1}=2×\frac{2^{n}-1}{2^{n + 2}-1}$,则$\frac{a_{n}}{a_{n - 1}}×\frac{a_{n - 1}}{a_{n - 2}}×\frac{a_{n - 2}}{a_{n - 3}}×·s×\frac{a_{2}}{a_{1}}=2×\frac{2^{n}-1}{2^{n + 1}-1}×2×\frac{2^{n - 1}-1}{2^{n}-1}×2×\frac{2^{n - 2}-1}{2^{n - 1}-1}×·s×2×\frac{2^{2}-1}{2^{3}-1}=2^{n - 1}×\frac{3}{(2^{n + 1}-1)(2^{n}-1)}(n\geq2)$,即$\frac{a_{n}}{a_{1}}=\frac{3×2^{n - 1}}{(2^{n}-1)(2^{n + 1}-1)}(n\geq2)$.又$a_{1}=\frac{2}{3}$,所以$a_{n}=\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}(n\geq2)$.因为当$n = 1$时也符合上式,所
以$a_{n}=\frac{2^{n}}{(2^{n}-1)(2^{n + 1}-1)}$.
16.[2022·广东广州高二期末]已知数列$\{ a_{n}\}$的前$n$项和$S_{n}$满足$S_{n} = n^{2}$,记数列$\left \{ \frac{1}{a_{n}a_{n + 1}} \right \}$的前$n$项和为$T_{n}$,则$T_{5} =$
(
A.$\frac{4}{9}$
B.$\frac{8}{9}$
C.$\frac{5}{11}$
D.$\frac{10}{11}$
(
C
)A.$\frac{4}{9}$
B.$\frac{8}{9}$
C.$\frac{5}{11}$
D.$\frac{10}{11}$
答案:
16.C【解析】因为数列$\{ a_{n}\}$的前$n$项和$S_{n}$满足$S_{n}=n^{2}$,所
以,当$n = 1$时,$a_{1}=S_{1}=1$.当$n\geq2$时,$a_{n}=S_{n}-S_{n - 1}=n^{2}-(n - 1)^{2}=2n - 1$.经检验,$a_{n}=2n - 1$对$n = 1$也成立,所以$a_{n}=2n - 1$.所以$\frac{1}{a_{n}a_{n + 1}}=\frac{1}{(2n - 1)(2n + 1)}=\frac{1}{2}×\left(\frac{1}{2n - 1}-\frac{1}{2n + 1}\right)$,所以$T_{5}=\frac{1}{2}×\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{5}{11}$.故选C.
以,当$n = 1$时,$a_{1}=S_{1}=1$.当$n\geq2$时,$a_{n}=S_{n}-S_{n - 1}=n^{2}-(n - 1)^{2}=2n - 1$.经检验,$a_{n}=2n - 1$对$n = 1$也成立,所以$a_{n}=2n - 1$.所以$\frac{1}{a_{n}a_{n + 1}}=\frac{1}{(2n - 1)(2n + 1)}=\frac{1}{2}×\left(\frac{1}{2n - 1}-\frac{1}{2n + 1}\right)$,所以$T_{5}=\frac{1}{2}×\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{5}{11}$.故选C.
17.(多选)已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$S_{n} = 2a_{n} + 1$,则下列选项正确的是 (
A.$a_{1} = - 1$
B.$S_{5} = - 32$
C.数列$\{ a_{n}\}$是等比数列
D.数列$\{ S_{n} - 1\}$的前$n$项和为$2 - 2^{n + 1}$
ACD
)A.$a_{1} = - 1$
B.$S_{5} = - 32$
C.数列$\{ a_{n}\}$是等比数列
D.数列$\{ S_{n} - 1\}$的前$n$项和为$2 - 2^{n + 1}$
答案:
17.ACD【解析】$\because S_{n}=2a_{n}+1$①,$\therefore S_{n + 1}=2a_{n + 1}+1$②,② -
①,得$a_{n + 1}=2a_{n + 1}-2a_{n},\therefore a_{n + 1}=2a_{n}$,即$\frac{a_{n + 1}}{a_{n}} = 2.\because a_{1}=S_{1}=2a_{1}+1,\therefore a_{1}=-1.\therefore$数列$\{ a_{n}\}$是以$-1$为首项,$2$为公比的等比数列,则$a_{n}=(-1)·2^{n - 1}=-2^{n - 1}$,$S_{n}=2a_{n}+1=-2^{n}+1$,
$\therefore$选项A,C正确.当$n = 5$时,$S_{5}=-2^{5}+1=-31,\therefore$选项B
错误.$\because S_{n}-1=-2^{n},S_{n + 1}-1=-2^{n + 1}$,$\therefore\frac{S_{n + 1}-1}{S_{n}-1}=2$.数列$\{ S_{n}-1\}$是首项为$-2$,公比为$2$的等比数列,则数列$\{ S_{n}-1\}$的前$n$项和为$\frac{-2(1 - 2^{n})}{1 - 2}=-2^{n + 1}+2,\therefore$选项D正确.故
选ACD.
①,得$a_{n + 1}=2a_{n + 1}-2a_{n},\therefore a_{n + 1}=2a_{n}$,即$\frac{a_{n + 1}}{a_{n}} = 2.\because a_{1}=S_{1}=2a_{1}+1,\therefore a_{1}=-1.\therefore$数列$\{ a_{n}\}$是以$-1$为首项,$2$为公比的等比数列,则$a_{n}=(-1)·2^{n - 1}=-2^{n - 1}$,$S_{n}=2a_{n}+1=-2^{n}+1$,
$\therefore$选项A,C正确.当$n = 5$时,$S_{5}=-2^{5}+1=-31,\therefore$选项B
错误.$\because S_{n}-1=-2^{n},S_{n + 1}-1=-2^{n + 1}$,$\therefore\frac{S_{n + 1}-1}{S_{n}-1}=2$.数列$\{ S_{n}-1\}$是首项为$-2$,公比为$2$的等比数列,则数列$\{ S_{n}-1\}$的前$n$项和为$\frac{-2(1 - 2^{n})}{1 - 2}=-2^{n + 1}+2,\therefore$选项D正确.故
选ACD.
18.已知数列$\{ a_{n}\}$满足$\frac{1}{2}a_{1} + \frac{1}{2^{2}}a_{2} + \frac{1}{2^{3}}a_{3} + ·s + \frac{1}{2^{n}}a_{n} = 2n + 5$,则数列$\{ a_{n}\}$的通项公式为$a_{n} =$.
答案:
18.$\begin{cases}14,n = 1,\\2^{n + 1},n\geq2\end{cases}$【解析】当$n = 1$时,$\frac{1}{2}a_{1}=7$,所以$a_{1}=14$.因
为$\frac{1}{2^{n}}a_{1}+\frac{1}{2^{2}}a_{2}+\frac{1}{2^{3}}a_{3}+·s+\frac{1}{2^{n}}a_{n}=2n + 5$,所以当$n\geq2$时,$\frac{1}{2^{n}}a_{1}+\frac{1}{2^{2}}a_{2}+\frac{1}{2^{3}}a_{3}+·s+\frac{1}{2^{n - 1}}a_{n - 1}=2n + 3$.两式相减,得$\frac{1}{2^{n}}a_{n}=2$,化简得$a_{n}=2^{n + 1}$.因为当$n = 1$时,$a_{1}=14$不符合上式,所以$a_{n}=\begin{cases}14,n = 1,\\2^{n + 1},n\geq2\end{cases}$.
为$\frac{1}{2^{n}}a_{1}+\frac{1}{2^{2}}a_{2}+\frac{1}{2^{3}}a_{3}+·s+\frac{1}{2^{n}}a_{n}=2n + 5$,所以当$n\geq2$时,$\frac{1}{2^{n}}a_{1}+\frac{1}{2^{2}}a_{2}+\frac{1}{2^{3}}a_{3}+·s+\frac{1}{2^{n - 1}}a_{n - 1}=2n + 3$.两式相减,得$\frac{1}{2^{n}}a_{n}=2$,化简得$a_{n}=2^{n + 1}$.因为当$n = 1$时,$a_{1}=14$不符合上式,所以$a_{n}=\begin{cases}14,n = 1,\\2^{n + 1},n\geq2\end{cases}$.
19.数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{1} = 1,a_{n + 1} = 2S_{n}S_{n + 1}$,则$S_{n} =$
$\frac{1}{3 - 2n}$
.
答案:
19.$\frac{1}{3 - 2n}$思维路径由$a_{n + 1}=2S_{n}S_{n + 1}\to S_{n + 1}-S_{n}=2S_{n}S_{n + 1}\to$求出$S_{n}$.
【解析】由$a_{n + 1}=2S_{n}S_{n + 1}$可得$S_{n + 1}-S_{n}=2S_{n}S_{n + 1}$,所以$S_{n + 1}-S_{n}=2S_{n}S_{n + 1}$,所以$\frac{S_{n + 1}-S_{n}}{S_{n}S_{n + 1}}=2$,即$\frac{1}{S_{n}}-\frac{1}{S_{n + 1}}=2$,所以$\frac{1}{S_{n + 1}}-\frac{1}{S_{n}}=-2$,所以数列$\left\{\frac{1}{S_{n}}\right\}$是以$1$为首项,$-2$为公差的等差数列,所以$\frac{1}{S_{n}}=1-2(n - 1)=3 - 2n$,所以$S_{n}=\frac{1}{3 - 2n}$.
方法总结由$S_{n}$与$a_{n}$的关系求通项公式的解题
思路
根据所求结果的不同要求,将关系式向不同的两个方向转化.
(1)利用$a_{n}=S_{n}-S_{n - 1}(n\geq2)$转化为只含$S_{n},S_{n - 1}$的关
系式,再求解;
(2)利用$S_{n}-S_{n - 1}=a_{n}(n\geq2)$转化为只含$a_{n},a_{n - 1}$的关
系式,再求解.
【解析】由$a_{n + 1}=2S_{n}S_{n + 1}$可得$S_{n + 1}-S_{n}=2S_{n}S_{n + 1}$,所以$S_{n + 1}-S_{n}=2S_{n}S_{n + 1}$,所以$\frac{S_{n + 1}-S_{n}}{S_{n}S_{n + 1}}=2$,即$\frac{1}{S_{n}}-\frac{1}{S_{n + 1}}=2$,所以$\frac{1}{S_{n + 1}}-\frac{1}{S_{n}}=-2$,所以数列$\left\{\frac{1}{S_{n}}\right\}$是以$1$为首项,$-2$为公差的等差数列,所以$\frac{1}{S_{n}}=1-2(n - 1)=3 - 2n$,所以$S_{n}=\frac{1}{3 - 2n}$.
方法总结由$S_{n}$与$a_{n}$的关系求通项公式的解题
思路
根据所求结果的不同要求,将关系式向不同的两个方向转化.
(1)利用$a_{n}=S_{n}-S_{n - 1}(n\geq2)$转化为只含$S_{n},S_{n - 1}$的关
系式,再求解;
(2)利用$S_{n}-S_{n - 1}=a_{n}(n\geq2)$转化为只含$a_{n},a_{n - 1}$的关
系式,再求解.
20.已知数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且满足$4(n + 1)· ( S_{n} + 1 ) = ( n + 2 )^{2}a_{n}$,则数列$\{ a_{n}\}$的通项公式$a_{n} =$
$(n + 1)^{3}$
.
答案:
20.$(n + 1)^{3}$思维路径根据给定的递推公式,结合“当$n\geq2$时,$S_{n}-S_{n - 1}=a_{n}$”化简利用累乘法求解.
【解析】由$4(n + 1)(S_{n}+1)=(n + 2)^{2}a_{n}$,得$S_{n}=\frac{(n + 2)^{2}a_{n}}{4(n + 1)}-1$,
1.当$n\geq2$时,$S_{n - 1}=\frac{(n + 1)^{2}a_{n - 1}}{4n}-1$,两式相减,得$a_{n}=\frac{(n + 2)^{2}a_{n}}{4(n + 1)}-\frac{(n + 1)^{2}a_{n - 1}}{4n}$,整理,得$n^{3}a_{n}=(n + 1)^{3}a_{n - 1}$.当$n = 1$时,$S_{1}=a_{1}$,即$8(a_{1}+1)=9a_{1}$,解得$a_{1}=8$.当$n\geq2$时,$\frac{a_{n}}{a_{n - 1}}=\frac{n + 1}{n}^{3},\frac{a_{n - 1}}{a_{n - 2}}=\frac{n}{n - 1}^{3},\frac{a_{n - 2}}{a_{n - 3}}=\frac{n - 1}{n - 2}^{3},·s,\frac{a_{2}}{a_{1}}=\frac{2 + 1}{2}^{3}$,又$a_{1}=8$满足上式,所以$a_{n}=(n + 1)^{3}$.
【解析】由$4(n + 1)(S_{n}+1)=(n + 2)^{2}a_{n}$,得$S_{n}=\frac{(n + 2)^{2}a_{n}}{4(n + 1)}-1$,
1.当$n\geq2$时,$S_{n - 1}=\frac{(n + 1)^{2}a_{n - 1}}{4n}-1$,两式相减,得$a_{n}=\frac{(n + 2)^{2}a_{n}}{4(n + 1)}-\frac{(n + 1)^{2}a_{n - 1}}{4n}$,整理,得$n^{3}a_{n}=(n + 1)^{3}a_{n - 1}$.当$n = 1$时,$S_{1}=a_{1}$,即$8(a_{1}+1)=9a_{1}$,解得$a_{1}=8$.当$n\geq2$时,$\frac{a_{n}}{a_{n - 1}}=\frac{n + 1}{n}^{3},\frac{a_{n - 1}}{a_{n - 2}}=\frac{n}{n - 1}^{3},\frac{a_{n - 2}}{a_{n - 3}}=\frac{n - 1}{n - 2}^{3},·s,\frac{a_{2}}{a_{1}}=\frac{2 + 1}{2}^{3}$,又$a_{1}=8$满足上式,所以$a_{n}=(n + 1)^{3}$.
查看更多完整答案,请扫码查看