2025年练习生高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年练习生高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
23.若等比数列的首项为4,公比为2,则数列中第2项与第4项的等比中项为(
A.32
B.-16
C.$\pm 32$
D.$\pm 16$
D
)A.32
B.-16
C.$\pm 32$
D.$\pm 16$
答案:
D 【解析】设第2项与第4项的等比中项为$x$.因为等比数列的首项为4,公比为2,所以数列中第2项为8,第4项为32,则$x^2 = 8×32 = 256$,解得$x = ±16$.故选D.
24.[2023·广东佛山李兆基中学高二月考]在等比数列$\{ a_n \}$中,已知$a_1 + a_3 = 8,a_5 + a_7 = 4$,则$a_9 + a_{11} + a_{13} + a_{15} =$ (
A.11
B.6
C.3
D.18
C
)A.11
B.6
C.3
D.18
答案:
C 【解析】$\because$等比数列$\{ a_n \}$中,$a_5 + a_7 = 4$,$\therefore (a_1 + a_3)q^4 = 4$.$\because a_1 + a_3 = 8$,$\therefore q^2 = \frac{1}{2}$,$\therefore a_1 + a_2 + a_3 + a_5 = (a_5 + a_7)q^{-2} + (a_5 + a_7)q^{-4} = 4×2 + 4×4 = 3$.故选C.
25.已知在等比数列$\{ a_n \}$中,$a_3 = 2,a_4a_6 = 16$,则$\frac{a_9 - a_{11}}{a_5 - a_7} =$ (
A.16
B.8
C.4
D.2
C
)A.16
B.8
C.4
D.2
答案:
C 【解析】由$a_4a_6 = a_5^2 = 16$,得$a_5 = ±4$.因为$a_5 = a_3q^2$,且$a_3 = 2$,所以$a_5 = a_3q^2>0$,则$a_5 = 4$.因为$\frac{a_9 - a_{11}}{a_5 - a_7} = \frac{a_5q^4 - a_7q^4}{a_5 - a_7} = q^4$,而$\frac{a_5}{a_3} = q^2 = 2$,所以$\frac{a_9 - a_{11}}{a_5 - a_7} = q^4 = 4$.故选C.
26.[2023·陕西西安中学高二月考]已知数列$\{ a_n \}$是公差不为零的等差数列,$\{ b_n \}$是正项等比数列,若$a_1 = b_1,a_7 = b_7$,则(
A.$a_4 = b_4$
B.$a_5 < b_5$
C.$a_8 > b_8$
D.$a_9 < b_9$
D
)A.$a_4 = b_4$
B.$a_5 < b_5$
C.$a_8 > b_8$
D.$a_9 < b_9$
答案:
D 【解析】等差数列的通项公式是关于$n$的一次函数,$n \in \mathbf{N}^*$,其图像中孤立的点在一条直线上,而等比数列的通项公式是关于$n$的指数函数形式,其图像中孤立的点在指数函数图像上.当公差$d>0$时,如图
(1);当公差$d<0$时,如图
(2).
由图知,当$a_1 = b_1$,$a_7 = b_7$时,$a_4>b_4$,$a_5>b_5$,$a_8<b_8$,$a_9<b_9$.故选D.
D 【解析】等差数列的通项公式是关于$n$的一次函数,$n \in \mathbf{N}^*$,其图像中孤立的点在一条直线上,而等比数列的通项公式是关于$n$的指数函数形式,其图像中孤立的点在指数函数图像上.当公差$d>0$时,如图
(1);当公差$d<0$时,如图
(2).
由图知,当$a_1 = b_1$,$a_7 = b_7$时,$a_4>b_4$,$a_5>b_5$,$a_8<b_8$,$a_9<b_9$.故选D.
27.若正项等比数列$\{ a_n \}$中的$a_5,a_{2019}$是方程$x^2 - 4x + 3 = 0$的两个根,则$\log_3 a_1 + \log_3 a_2 + \log_3 a_3 + ·s + \log_3 a_{2023} =$ (
A.$\frac{2024}{3}$
B.1011
C.$\frac{2023}{2}$
D.1012
C
)A.$\frac{2024}{3}$
B.1011
C.$\frac{2023}{2}$
D.1012
答案:
C 【解析】因为等比数列$\{ a_n \}$中的$a_5$,$a_{2019}$是方程$x^2 - 4x + 3 = 0$的两个根,所以$a_5a_{2019} = 3$.根据等比数列的性质知,$a_1a_{2023} = a_2a_{2022} = ·s = a_{1011}a_{1013} = a_{1012}a_{1012} = 3$.因为$a_{1012}>0$,所以$a_{1012} = \sqrt{3}$,则$\log_3a_1 + \log_3a_2 + \log_3a_3 + ·s + \log_3a_{2023} = \log_3(a_1a_2a_3·s a_{2023}) = \log_3a_{1012}^{2023} = \log_3(\sqrt{3})^{2023} = \frac{2023}{2}$.故选C.
28.已知等比数列$\{ a_n \}$的各项均为正数,且$a_1 + a_3 = 20,a_3 + a_5 = 5$,则使得$a_1a_2·s a_n < 1$成立的正整数$n$的最小值为(
A.8
B.9
C.10
D.11
C
)A.8
B.9
C.10
D.11
答案:
C 思维路径:利用等比数列的通项公式列方程组$\to$得$a_1$和$q \to$得$a_n \to$代入题干不等式$\to$得正整数$n$的范围$\to$得答案.
【解析】设等比数列$\{ a_n \}$的通项公式为$a_n = a_1q^{n - 1}$,$a_1>0$,$q>0$.由题意,得$\begin{cases} a_1 + a_1q^2 = 20 \\ a_1q^2 + a_1q^4 = 5 \end{cases}$,两式相除,得$q^2 = \frac{1}{4}$,解得$q = \frac{1}{2}$,所以$a_1 = 16$,所以$a_n = 2^{5 - n}$,所以$a_1a_2·s a_n = 2^{4 + 3 + 2 + 1 + 0 + ·s + (5 - n)} = 2^{\frac{n(9 - n)}{2}}<1$,即$\frac{n(9 - n)}{2}<0$,解得$n<0$(舍去)或$n>9$,所以正整数$n$的最小值为10.故选C.
【解析】设等比数列$\{ a_n \}$的通项公式为$a_n = a_1q^{n - 1}$,$a_1>0$,$q>0$.由题意,得$\begin{cases} a_1 + a_1q^2 = 20 \\ a_1q^2 + a_1q^4 = 5 \end{cases}$,两式相除,得$q^2 = \frac{1}{4}$,解得$q = \frac{1}{2}$,所以$a_1 = 16$,所以$a_n = 2^{5 - n}$,所以$a_1a_2·s a_n = 2^{4 + 3 + 2 + 1 + 0 + ·s + (5 - n)} = 2^{\frac{n(9 - n)}{2}}<1$,即$\frac{n(9 - n)}{2}<0$,解得$n<0$(舍去)或$n>9$,所以正整数$n$的最小值为10.故选C.
29.若数列$\{ a_n \}$满足$a_{n + 1} = 2a_n - 1$,则称$\{ a_n \}$为“对奇数列”.已知正项数列$\{ b_n + 1 \}$为“对奇数列”,且$b_1 = 2$,则$b_n =$ (
A.$2 × 3^{n - 1}$
B.$2^{n - 1}$
C.$2^{n + 1}$
D.$2^n$
D
)A.$2 × 3^{n - 1}$
B.$2^{n - 1}$
C.$2^{n + 1}$
D.$2^n$
答案:
D 思维路径:根据题意可得$b_{n + 1} + 1 = 2(b_n + 1) - 1$即$b_{n + 1} = 2b_n \to$得$\{ b_n \}$为等比数列$\to$得通项公式.
【解析】由题意,得$b_{n + 1} + 1 = 2(b_n + 1) - 1$,即$b_{n + 1} = 2b_n$.又$b_1 = 2$,所以$\{ b_n \}$是首项为2,公比为2的等比数列,所以$b_n = 2×2^{n - 1} = 2^n$.故选D.
【解析】由题意,得$b_{n + 1} + 1 = 2(b_n + 1) - 1$,即$b_{n + 1} = 2b_n$.又$b_1 = 2$,所以$\{ b_n \}$是首项为2,公比为2的等比数列,所以$b_n = 2×2^{n - 1} = 2^n$.故选D.
30.[2022·北京平谷高二期末]在等比数列$\{ a_n \}$中,若$a_1 = -24,a_4 = - \frac{8}{9}$,则公比$q =$
$\frac{1}{3}$
;当$n =$4
时,数列$\{ a_n \}$的前$n$项积最大.
答案:
$\frac{1}{3}$ 4 【解析】在等比数列$\{ a_n \}$中,若$a_1 = -24$,$a_4 = \frac{8}{9}$,则$q^3 = \frac{a_4}{a_1} = \frac{\frac{8}{9}}{-24} = \frac{1}{-27}$,解得$q = \frac{1}{3}$.设数列$\{ a_n \}$的前$n$项积为$T_n$.$\because a_n = a_1q^{n - 1} = -24×(\frac{1}{3})^{n - 1}$,$\therefore T_n = a_1a_2·s a_n = (-24)^n(\frac{1}{3})^{\frac{1 + 2 + ·s + (n - 1)}{2}} = (-24)^n(\frac{1}{3})^{\frac{n(n - 1)}{2}}$.当$n$为奇数时,$T_n<0$;当$n$为偶数时,$T_n>0$.$\therefore$当$T_n$取最大值时,$n$为偶数.又$T_2 = (-24)^2×\frac{1}{3}×\frac{1}{3}<(-24)^4×(\frac{1}{3})^6 = T_4$,当$n \geqslant 4$且$n$为偶数时,易得$T_{n + 2}<T_n$,$\therefore$当$n = 4$时,数列$\{ a_n \}$的前$n$项积最大.
31.某学校有A,B两家餐厅,通过调查发现:开学第一天的中午,有一半的学生到A餐厅就餐,另一半的学生到B餐厅就餐;从第二天起,在前一天选择A餐厅就餐的学生中,次日会有$\frac{1}{4}$的学生继续选择A餐厅,在前一天选择B餐厅就餐的学生中,次日会有$\frac{1}{2}$的学生继续选择B餐厅.该学校共有学生3500人,经过一个学期(约150天)后,估计该学校到A餐厅就餐的学生人数为
1400
(用整数作答).
答案:
1400 【解析】设第$n$天选择A餐厅就餐的学生比例为$a_n$.由题意,得$a_1 = \frac{1}{2}$,$a_n = \frac{1}{4}a_{n - 1} + \frac{1}{2}(1 - a_{n - 1})$,所以$a_n = -\frac{1}{4}a_{n - 1} + \frac{1}{2}$,故$a_n - \frac{2}{5} = -\frac{1}{4}(a_{n - 1} - \frac{2}{5})$,所以$\{ a_n - \frac{2}{5} \}$是以$\frac{1}{10}$为首项,$-\frac{1}{4}$为公比的等比数列,所以$a_n - \frac{2}{5} = \frac{1}{10}×(-\frac{1}{4})^{n - 1}$,则$a_{151} = \frac{2}{5} + \frac{1}{10}×(-\frac{1}{4})^{150} \approx \frac{2}{5}$,所以经过一个学期(约150天)后,估计该学校到A餐厅就餐的学生人数为$3500×a_{151} \approx 3500×\frac{2}{5} = 1400$.
32.[2022·北京顺义牛栏山第一中学高二期中]设数列$\{ a_n \}$是公比不为1的等比数列,$a_1$为$a_2,a_3$的等差中项.
(1)求数列$\{ a_n \}$的公比;
(2)若$a_1 > 0,a_4a_6 = 4$,求$a_3$.
(1)求数列$\{ a_n \}$的公比;
(2)若$a_1 > 0,a_4a_6 = 4$,求$a_3$.
答案:
【解】
(1)设等比数列$\{ a_n \}$的公比为$q$,则$q \neq 1$.$\because a_1$为$a_2$,$a_3$的等差中项,$\therefore 2a_1 = a_2 + a_3$,$a_1 \neq 0$,则$q^2 + q - 2 = 0$,
解得$q = -2$或$q = 1$(舍去).
$\therefore$数列$\{ a_n \}$的公比为$-2$.
(2)$\because a_1>0$,$a_4a_6 = 4$,
$\therefore$由等比数列的性质,得$a_4a_6 = a_5^2 = 4$,$\therefore a_5 = 2$.
$\therefore a_3 = \frac{a_5}{q^2} = \frac{2}{4} = \frac{1}{2}$.
(1)设等比数列$\{ a_n \}$的公比为$q$,则$q \neq 1$.$\because a_1$为$a_2$,$a_3$的等差中项,$\therefore 2a_1 = a_2 + a_3$,$a_1 \neq 0$,则$q^2 + q - 2 = 0$,
解得$q = -2$或$q = 1$(舍去).
$\therefore$数列$\{ a_n \}$的公比为$-2$.
(2)$\because a_1>0$,$a_4a_6 = 4$,
$\therefore$由等比数列的性质,得$a_4a_6 = a_5^2 = 4$,$\therefore a_5 = 2$.
$\therefore a_3 = \frac{a_5}{q^2} = \frac{2}{4} = \frac{1}{2}$.
查看更多完整答案,请扫码查看